Marzia De Bortoli
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marzia De Bortoli.
Heart Rhythm | 2010
Barbara Bauce; Andrea Nava; Giorgia Beffagna; Cristina Basso; Alessandra Lorenzon; Gessica Smaniotto; Marzia De Bortoli; Ilaria Rigato; Elisa Mazzotti; Alexandros Steriotis; Martina Perazzolo Marra; Jeffry A. Towbin; Gaetano Thiene; Gian Antonio Danieli; Alessandra Rampazzo
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a progressive cardiomyopathy showing a wide clinical spectrum in terms of clinical expressions and prognoses. OBJECTIVE This study sought to estimate the occurrence of compound and double heterozygotes for mutations in desmosomal proteins encoding genes in a cohort of ARVC/D Italian index cases, and to assess the clinical phenotype of mutations carriers. METHODS Fourty-two consecutive ARVC/D index cases who fulfilled the International Task Force diagnostic criteria were screened for mutations in PKP2, DSP, DSG2, DSC2, and JUP genes by denaturing high-performance liquid chromatography (DHPLC) and direct sequencing. RESULTS Three probands (7.1%) showing a family history of sudden death carried multiple mutations. Family screening identified an additional 7 multiple-mutation carriers. Among the 7 double heterozygotes for mutations in different genes, 2 were clinically unaffected, 2 were affected, and 3 showed some clinical signs of ARVC/D even if they did not fulfill the diagnostic criteria. Two compound heterozygotes for mutations in the same gene and 1 subject carrying 3 different mutations showed a severe form of the disease with heart failure onset at a young age. Moreover, multiple-mutation carriers showed a higher prevalence of left ventricular involvement (P = .025) than single-mutation carriers. CONCLUSION Occurrence of compound and double heterozygotes in ARVC/D index cases is particularly relevant to mutation screening strategy and to genetic counseling. Even if multiple-mutation carriers show a wide variability in clinical expression, the extent of the disease is higher compared to that in single-mutation carriers.
Circulation-cardiovascular Genetics | 2013
Ilaria Rigato; Barbara Bauce; Alessandra Rampazzo; Alessandro Zorzi; Kalliopi Pilichou; Elisa Mazzotti; Federico Migliore; Martina Perazzolo Marra; Alessandra Lorenzon; Marzia De Bortoli; Martina Calore; Andrea Nava; Luciano Daliento; Dario Gregori; Sabino Iliceto; Gaetano Thiene; Cristina Basso; Domenico Corrado
Background—Mutations in genes encoding for desmosomal proteins are the most common cause of arrhythmogenic right ventricular cardiomyopathy (ARVC). We assessed the value of genotype for prediction of lifetime major arrhythmic events and sudden cardiac death (SCD) in desmosomal gene–related ARVC. Methods and Results—The overall study population included 134 desmosomal gene mutation carriers (68 men; median age 36 years [22–52]) from 44 consecutive ARVC families undergoing comprehensive genetic screening. The probability of experiencing a first major arrhythmic event or SCD during a lifetime was determined by using date of birth as start point for the time-to-event analysis, and was stratified by sex, desmosomal genes, mutation types, and genotype complexity (single versus multiple mutations). One hundred thirteen patients (84%) carried a single desmosomal gene mutation in desmoplakin (n=44; 39%), plakophilin-2 (n=38; 34%), desmoglein-2 (n=30; 26%), and desmocollin-2 (n=1; 1%), whereas 21 patients (16%) had a complex genotype with compound heterozygosity in 7 and digenic heterozygosity in 14. Over a median observation period of 39 (22–52) years, 22 patients (16%) from 20 different families had arrhythmic events, such as SCD (n=1), aborted SCD because of ventricular fibrillation (n=6), sustained ventricular tachycardia (n=14), and appropriate defibrillator intervention (n=1). Multiple desmosomal gene mutations and male sex were independent predictors of lifetime arrhythmic events with a hazard ratio of 3.71 (95% confidence interval, 1.54–8.92; P=0.003) and 2.76 (95% confidence interval, 1.19–6.41; P=0.02), respectively. Conclusions—Compound/digenic heterozygosity was identified in 16% of ARVC-causing desmosomal gene mutation carriers and was a powerful risk factor for lifetime major arrhythmic events and SCD. These results support the use of comprehensive genetic screening of desmosomal genes for arrhythmic risk stratification in ARVC.
European Heart Journal | 2013
Jolanda van Hengel; Martina Calore; Barbara Bauce; Emanuela Dazzo; Elisa Mazzotti; Marzia De Bortoli; Alessandra Lorenzon; Ilena E.A. Li Mura; Giorgia Beffagna; Ilaria Rigato; Mara Vleeschouwers; Koen Tyberghein; Paco Hulpiau; Evelien Van Hamme; Tania Zaglia; Domenico Corrado; Cristina Basso; Gaetano Thiene; Luciano Daliento; Andrea Nava; Frans van Roy; Alessandra Rampazzo
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a major cause of juvenile sudden death and is characterized by fibro-fatty replacement of the right ventricle. Mutations in several genes encoding desmosomal proteins have been identified in ARVC. We speculated that αT-catenin, encoded by CTNNA3, might also carry mutations in ARVC patients. Alpha-T-catenin binds plakophilins and this binding contributes to the formation of the area composita, which strengthens cell-cell adhesion in contractile cardiomyocytes. METHODS AND RESULTS We used denaturing high-performance liquid chromatography and direct sequencing to screen CTNNA3 in 76 ARVC patients who did not carry any mutations in the desmosomal genes commonly mutated in ARVC. Mutations c.281T > A (p.V94D) and c.2293_2295delTTG (p.del765L) were identified in two probands. They are located in important domains of αT-catenin. Yeast two-hybrid and cell transfection studies showed that the interaction between the p.V94D mutant protein and β-catenin was affected, whereas the p.del765L mutant protein showed a much stronger dimerization potential and formed aggresomes in HEK293T cells. CONCLUSION These findings might point to a causal relationship between CTNNA3 mutations and ARVC. This first report on the involvement of an area composita gene in ARVC shows that the pathogenesis of this disease extends beyond desmosomes. Since the frequency of CTNNA3 mutations in ARVC patients is not rare, systematic screening for this gene should be considered to improve the clinical management of ARVC families.
BMC Medical Genetics | 2007
Giorgia Beffagna; Marzia De Bortoli; Andrea Nava; Michela Salamon; Alessandra Lorenzon; Manuela Zaccolo; Luisa Mancuso; Luca Sigalotti; Barbara Bauce; Gianluca Occhi; Cristina Basso; Gerolamo Lanfranchi; Jeffrey A. Towbin; Gaetano Thiene; Gian Antonio Danieli; Alessandra Rampazzo
BackgroundMutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement.We screened 54 ARVC probands for mutations in desmocollin-2 (DSC2), the only desmocollin isoform expressed in cardiac tissue.MethodsMutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing.To evaluate the pathogenic potentials of the DSC2 mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells.ResultsWe identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions.In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm.ConclusionThe two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling.
Heart Rhythm | 2011
Barbara Bauce; Alessandra Rampazzo; Cristina Basso; Elisa Mazzotti; Ilaria Rigato; Alexandros Steriotis; Giorgia Beffagna; Alessandra Lorenzon; Marzia De Bortoli; Kalliopi Pilichou; Martina Perazzolo Marra; Francesco Corbetti; Luciano Daliento; Sabino Iliceto; Domenico Corrado; Gaetano Thiene; Andrea Nava
Background Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease carrying a risk of sudden death. Information about the clinical features during childhood and the age at disease onset is scanty. Objective The aim of the study was to describe the ARVC phenotype as its initial clinical manifestation in a pediatric population (<18 years) with desmosomal gene mutations. Methods Fifty-three ARVC desmosomal gene mutation carriers (mean age 12.3 ± 3.9 years) were investigated by electrocardiogram (ECG), signal-averaged ECG, 24-hour Holter, echocardiogram, and contrast-enhanced cardiac magnetic resonance (CMR). Results None of the children ≤10 years old fulfilled the 1994 criteria, as opposed to six (33%) aged 11–14 years and eight aged >14 years (42%). At the end of follow-up (9 ± 7 years), 21 (40%) fulfilled the 1994 diagnostic criteria (mean age 16 ± 4 years). By using the 2010 criteria in subjects aged ≤18 years, 53% were unaffected, versus 62% by using the traditional criteria. More than two-thirds of affected subjects had moderate-severe forms of the disease. Contrast-enhanced CMR was performed in 21 (40%); of 13 unaffected gene mutation carriers, six showed ARVC morphological and/or tissue abnormalities. Conclusion In pediatric ARVC mutation carriers, a diagnosis was achieved in 40% of cases, confirming that the disease usually develops during adolescence and young adulthood. The 2010 modified criteria seem to be more sensitive than the 1994 ones in identifying familial pediatric cases. Contrast-enhanced CMR can provide diagnostic information on gene mutation carriers not fulfilling either traditional or modified criteria. Management of asymptomatic gene mutation carriers remains the main clinical challenge.
American Journal of Cardiology | 2013
Alessandra Lorenzon; Giorgia Beffagna; Barbara Bauce; Marzia De Bortoli; Ilena E.A. Li Mura; Martina Calore; Emanuela Dazzo; Cristina Basso; Andrea Nava; Gaetano Thiene; Alessandra Rampazzo
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias, associated with mutations in the desmosomal genes. Only a missense mutation in the DES gene coding for desmin, the intermediate filament protein expressed by cardiac and skeletal muscle cells, has been recently associated with ARVC. We screened 91 ARVC index cases (53 negative for mutations in desmosomal genes and an additional 38 carrying desmosomal gene mutations) for DES mutations. Two rare missense variants were identified. The heterozygous p.K241E substitution was detected in 1 patient affected with a severe form of ARVC who also carried the p.T816RfsX10 mutation in plakophilin-2 gene. This DES substitution, showing an allele frequency of <0.01 in the control population, is predicted to cause an intolerant amino acid change in a highly conserved protein domain. Thus, it can be considered a rare variant with a possible modifier effect on the phenotypic expression of the concomitant mutation. The previously known p.A213V substitution was identified in 1 patient with ARVC who was negative for mutations in the desmosomal genes. Because a greater prevalence of p.A213V has been reported in patients with heart dilation than in control subjects, the hypothesis that this rare variant could have an unfavorable effect on cardiac remodeling cannot be ruled out. In conclusion, our data help to establish that, in the absence of skeletal muscle involvement suggestive of a desminopathy, the probability of DES mutations in ARVC is very low. These findings have important implications in the mutation screening strategy for patients with ARVC.
European Journal of Human Genetics | 2013
Ilena E.A. Li Mura; Barbara Bauce; Andrea Nava; Manuela Fanciulli; Giovanni Vazza; Elisa Mazzotti; Ilaria Rigato; Marzia De Bortoli; Giorgia Beffagna; Alessandra Lorenzon; Martina Calore; Emanuela Dazzo; Carlo Nobile; Maria Luisa Mostacciuolo; Domenico Corrado; Cristina Basso; Luciano Daliento; Gaetano Thiene; Alessandra Rampazzo
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a primary heart muscle disease characterized by progressive myocardial loss, with fibro-fatty replacement, and high frequency of ventricular arrhythmias that can lead to sudden cardiac death. ARVC is a genetically determined disorder, usually caused by point mutations in components of the cardiac desmosome. Conventional mutation screening of ARVC genes fails to detect causative mutations in about 50% of index cases, suggesting a further genetic heterogeneity. We performed a genome-wide linkage study and a copy number variations (CNVs) analysis, using high−density SNP arrays, in an ARVC family showing no mutations in any of the desmosomal genes. The CNVs analysis identified a heterozygous deletion of about 122 kb on chromosome 12p11.21, including the entire plakophilin-2 gene and shared by all affected family members. It was not listed on any of available public CNVs databases and was confirmed by quantitative real-time PCR. This is the first SNP array-based genome-wide study leading to the identification of a CNV segregating with the disease phenotype in an ARVC family. This result underscores the importance of performing additional analysis for possible genomic deletions/duplications in ARVC patients without point mutations in known disease genes.
European Journal of Human Genetics | 2010
Marzia De Bortoli; Giorgia Beffagna; Barbara Bauce; Alessandra Lorenzon; Gessica Smaniotto; Ilaria Rigato; Martina Calore; Ilena E.A. Li Mura; Cristina Basso; Gaetano Thiene; Gerolamo Lanfranchi; Gian Antonio Danieli; Andrea Nava; Alessandra Rampazzo
Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), an autosomal-dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement. We screened 112 ARVC/D probands for mutations in desmocollin-2 (DSC2) gene and detected two different amino-acid substitutions (p.E102K, p.I345T) and a frameshift variation (p.A897KfsX4) in 7 (6.2%) patients. DSC2a variant p.A897KfsX4, previously reported as a p.E896fsX900 mutation, was identified in five unrelated probands. Four of them were found to carry one or two mutations in different ARVC/D genes. Unexpectedly, p.A897KfsX4 variation was also found in 6 (1.5%) out of 400 control chromosomes. In vitro functional studies showed that, unlike wild-type DSC2a, this C-terminal mutated protein was localised in the cytoplasm. p.A897KfsX4 variation affects the last five amino acids of the DSC2a isoform but not of DSC2b. In contrast with what we found in other human tissues, in the heart DSC2b is more expressed than DSC2a, suggesting that relative deficiency of DSC2a might be compensated by isoform b. In conclusion, DSC2 gene mutations are not frequently involved in ARVC/D. The p.A897KfsX4 variation, identified in several Italian healthy control subjects, which affects only one of the two DSC2 isoforms, may be considered a rare variant, though possibly affecting phenotypic expression of concomitant ARVC/D mutations.
Journal of Medical Genetics | 2015
Chiara Calore; Marzia De Bortoli; Chiara Romualdi; Alessandra Lorenzon; Annalisa Angelini; Cristina Basso; Gaetano Thiene; Sabino Iliceto; Alessandra Rampazzo; Paola Melacini
Background Mutations in the cardiac myosin binding protein C (MYBPC3) gene account for a significant proportion of patients affected with hypertrophic cardiomyopathy (HCM). The aim of this study was to evaluate the penetrance and the impact of a frequent founder MYBPC3 mutation on HCM clinical expression and prognosis. Methods and results Mutation screening of MYBPC3 gene was performed in 97 HCM probands. Nineteen (19.5%) resulted to be carriers of the founder p.F305Pfs*27 mutation and other 45 mutation carriers were identified during the evaluation of 14 families. Eleven (38%) mutation carriers were diagnosed between ages 30 years and 40 years. Disease penetrance was incomplete (64.4%), age-related and was greater in men than women (85% vs 48%, p=0.009). Probands carrying the founder mutation exhibited highest prevalence of non-sustained ventricular tachycardia (63% vs 22%, p=0.003; 63% vs 23%, p=0.01) and implantable cardioverter-defibrillator (58% vs 17%, p=0.001; 58% vs 18%, p=0.005) when compared with probands without MYBPC3 mutations or carrying other MYBPC3 mutations. Reduced survival due to sudden cardiac death (SCD) or aborted SCD occurred more frequently after the fourth decade of life in probands carrying p.F305Pfs*27 mutation than those without MYBPC3 mutations (32% vs 15%, p=0.01). Conclusions p.F305Pfs*27 mutation carriers have a high probability to develop the disease between ages 30 years and 40 years with a significant major risk if they are men. This founder mutation is associated with an increase of SCD/aborted SCD events after the fourth decade of life.These findings are of relevant importance for management and clinical decision-making in patients with HCM.
Circulation-arrhythmia and Electrophysiology | 2017
Kalliopi Pilichou; Elisabetta Lazzarini; Ilaria Rigato; Rudy Celeghin; Marzia De Bortoli; Marina Perazzolo Marra; Marco Cason; Jan D. H. Jongbloed; Martina Calore; Stefania Rizzo; Daniela Regazzo; Giulia Poloni; Sabino Iliceto; Luciano Daliento; Pietro Delise; Domenico Corrado; J. Peter van Tintelen; Gaetano Thiene; Alessandra Rampazzo; Cristina Basso; Barbara Bauce; Alessandra Lorenzon; Gianluca Occhi
Background: Arrhythmogenic cardiomyopathy (AC) is an inherited heart muscle disease associated with point mutations in genes encoding for cardiac desmosome proteins. Conventional mutation screening is positive in ≈50% of probands. Copy number variations (CNVs) have recently been linked to AC pointing to the need to determine the prevalence of CNVs in desmosomal genes and to evaluate disease penetrance by cosegregation analysis in family members. Methods and Results: A total of 160 AC genotype-negative probands for 5 AC desmosomal genes by conventional mutation screening underwent multiplex ligation-dependent probe amplification. Nine heterozygous CNVs were identified in 11 (6.9%) of the 160 probands. Five carried a deletion of the entire plakophilin-2 (PKP2) gene, 2 a deletion of only PKP2 exon 4, 1 a deletion of the PKP2 exons 6 to 11, 1 a PKP2 duplication of 5′ untranslated region till exon 1, 1 the desmocollin-2 (DSC2) duplication of exons 7 to 9, and 1 a large deletion of chromosome 18 comprising both DSC2 and desmoglein-2 genes. All probands were affected by moderate-severe forms of the disease, whereas 10 (32%) of the 31 family members carrying one of these deletions fulfilled the diagnostic criteria. Conclusions: Genomic rearrangements were detected in ≈7% of AC probands negative for pathogenic point mutations in desmosomal genes, highlighting the potential of CNVs analysis to substantially increase the diagnostic yield of genetic testing. Genotype–phenotype correlation demonstrated the presence of the disease in about one third of family members carrying the CNV, underlying the role of other factors in the development and progression of the disease.