Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marzia Dolcino is active.

Publication


Featured researches published by Marzia Dolcino.


The New England Journal of Medicine | 2009

Identification of a Novel Antibody Associated with Autoimmune Pancreatitis

Luca Frulloni; Claudio Lunardi; Rita Simone; Marzia Dolcino; Chiara Scattolini; Massimo Falconi; Luigi Benini; Italo Vantini; Roberto Corrocher; Antonio Puccetti

BACKGROUND Autoimmune pancreatitis is characterized by an inflammatory process that leads to organ dysfunction. The cause of the disease is unknown. Its autoimmune origin has been suggested but never proved, and little is known about the pathogenesis of this condition. METHODS To identify pathogenetically relevant autoantigen targets, we screened a random peptide library with pooled IgG obtained from 20 patients with autoimmune pancreatitis. Peptide-specific antibodies were detected in serum specimens obtained from the patients. RESULTS Among the detected peptides, peptide AIP(1-7) was recognized by the serum specimens from 18 of 20 patients with autoimmune pancreatitis and by serum specimens from 4 of 40 patients with pancreatic cancer, but not by serum specimens from healthy controls. The peptide showed homology with an amino acid sequence of plasminogen-binding protein (PBP) of Helicobacter pylori and with ubiquitin-protein ligase E3 component n-recognin 2 (UBR2), an enzyme highly expressed in acinar cells of the pancreas. Antibodies against the PBP peptide were detected in 19 of 20 patients with autoimmune pancreatitis (95%) and in 4 of 40 patients with pancreatic cancer (10%). Such reactivity was not detected in patients with alcohol-induced chronic pancreatitis or intraductal papillary mucinous neoplasm. The results were validated in another series of patients with autoimmune pancreatitis or pancreatic cancer: 14 of 15 patients with autoimmune pancreatitis (93%) and 1 of 70 patients with pancreatic cancer (1%) had a positive test for anti-PBP peptide antibodies. When the training and validation groups were combined, the test was positive in 33 of 35 patients with autoimmune pancreatitis (94%) and in 5 of 110 patients with pancreatic cancer (5%). CONCLUSIONS The antibody that we identified was detected in most patients with autoimmune pancreatitis but also in some patients with pancreatic cancer, making it an imperfect test to distinguish between these two conditions.


PLOS Medicine | 2006

In Celiac Disease, a Subset of Autoantibodies against Transglutaminase Binds Toll-Like Receptor 4 and Induces Activation of Monocytes

Giovanna Zanoni; Riccardo Navone; Claudio Lunardi; Giuseppe Tridente; Caterina Bason; Simona Sivori; Ruggero Beri; Marzia Dolcino; Enrico Valletta; Roberto Corrocher; Antonio Puccetti

Background Celiac disease is a small intestine inflammatory disorder with multiple organ involvement, sustained by an inappropriate immune response to dietary gluten. Anti-transglutaminase antibodies are a typical serological marker in patients with active disease, and may disappear during a gluten-free diet treatment. Involvement of infectious agents and innate immunity has been suggested but never proven. Molecular mimicry is one of the mechanisms that links infection and autoimmunity. Methods and Findings In our attempt to clarify the pathogenesis of celiac disease, we screened a random peptide library with pooled sera of patients affected by active disease after a pre-screening with the sera of the same patients on a gluten-free diet. We identified a peptide recognized by serum immunoglobulins of patients with active disease, but not by those of patients on a gluten-free diet. This peptide shares homology with the rotavirus major neutralizing protein VP-7 and with the self-antigens tissue transglutaminase, human heat shock protein 60, desmoglein 1, and Toll-like receptor 4. We show that antibodies against the peptide affinity-purified from the sera of patients with active disease recognize the viral product and self-antigens in ELISA and Western blot. These antibodies were able to induce increased epithelial cell permeability evaluated by transepithelial flux of [3H] mannitol in the T84 human intestinal epithelial cell line. Finally, the purified antibodies induced monocyte activation upon binding Toll-like receptor 4, evaluated both by surface expression of activation markers and by production of pro-inflammatory cytokines. Conclusions Our findings show that in active celiac disease, a subset of anti-transglutaminase IgA antibodies recognize the viral protein VP-7, suggesting a possible involvement of rotavirus infection in the pathogenesis of the disease, through a mechanism of molecular mimicry. Moreover, such antibodies recognize self-antigens and are functionally active, able to increase intestinal permeability and induce monocyte activation. We therefore provide evidence for the involvement of innate immunity in the pathogenesis of celiac disease through a previously unknown mechanism of engagement of Toll-like receptor 4.


Autoimmunity Reviews | 2008

Human parvovirus B19 infection and autoimmunity

Claudio Lunardi; Elisa Tinazzi; Caterina Bason; Marzia Dolcino; Roberto Corrocher; Antonio Puccetti

Human parvovirus B19 infection is responsible for a wide range of human diseases ranging from mild erythema infectiosum in immunocompetent children to fetal loss in primary infected pregnant women and aplastic anemia or lethal cytopenias in adult immunocompromised patients. Since persistent viral infection is responsible for an autoimmune response and clinical symptoms can mimic autoimmune inflammatory disorders, parvovirus B19 is the object of intense efforts to clarify whether it is also able to trigger autoimmune diseases. Indeed the virus has been implicated as the causative or the precipitating agent of several autoimmune disorders including rheumatoid arthritis, systemic lupus, antiphospholipid syndrome, systemic sclerosis and vasculitides. Molecular mimicry between host and viral proteins seems to be the main mechanism involved in the induction of autoimmunity. By means of a random peptide library approach, we have identified a peptide that shares homology with parvovirus VP1 protein and with human cytokeratin. Moreover the VP peptide shares similarity with the transcription factor GATA1 that plays an essential role in megakaryopoiesis and in erythropoiesis. These new data sustain the role played by molecular mimicry in the induction of cross-reactive (auto)antibodies by parvovirus B19 infection.


PLOS ONE | 2007

Endothelial Cells' Activation and Apoptosis Induced by a Subset of Antibodies against Human Cytomegalovirus: Relevance to the Pathogenesis of Atherosclerosis

Claudio Lunardi; Marzia Dolcino; Dimitri Peterlana; Caterina Bason; Riccardo Navone; Nicola Tamassia; Elisa Tinazzi; Ruggero Beri; Roberto Corrocher; Antonio Puccetti

Background Human cytomegalovirus (hCMV) is involved in the pathogenesis of atherosclerosis. We have previously shown in patients with atherosclerosis that antibodies directed against the hCMV-derived proteins US28 and UL122 are able to induce endothelial cell damage and apoptosis of non-stressed endothelial cells through cross-rection with normally expressed surface molecules. Our aim was to dissect the molecular basis of such interaction and to investigate mechanisms linking innate immunity to atherosclerosis. Methodology/Principal Findings We analysed the gene expression profiles in endothelial cells stimulated with antibodies affinity-purified against either the UL122 or the US28 peptides using the microarray technology. Microarray results were validated by quantitative PCR and by detection of proteins in the medium. Supernatant of endothelial cells incubated with antibodies was analysed also for the presence of Heat Shock Protein (HSP)60 and was used to assess stimulation of Toll-Like Receptor-4 (TLR4). Antibodies against UL122 and US28 induced the expression of genes encoding for adhesion molecules, chemokines, growth factors and molecules involved in the apoptotis process together with other genes known to be involved in the initiation and progression of the atherosclerotic process. HSP60 was released in the medium of cells incubated with anti-US28 antibodies and was able to engage TLR4. Conclusions/Significance Antibodies directed against hCMV modulate the expression of genes coding for molecules involved in activation and apoptosis of endothelial cells, processes known to play a pivotal role in the pathogenesis of atherosclerosis. Moreover, endothelial cells exposed to such antibodies express HSP60 on the cell surface and release HSP60 in the medium able to activate TLR4. These data confirm that antibodies directed against hCMV-derived proteins US28 and UL122 purified from patients with coronary artery disease induce endothelial cell damage and support the hypothesis that hCMV infection may play a crucial role in mediating the atherosclerotic process.


International Immunology | 2009

Serum DNase I, soluble Fas/FasL levels and cell surface Fas expression in patients with SLE: a possible explanation for the lack of efficacy of hrDNase I treatment

Elisa Tinazzi; Antonio Puccetti; Roberto Gerli; Antonella Rigo; Paola Migliorini; Sara Simeoni; Ruggero Beri; Marzia Dolcino; Nicola Martinelli; Roberto Corrocher; Claudio Lunardi

The objectives of the study are to evaluate DNase I serum levels and their correlation with soluble Fas (sFas) and soluble Fas ligand (sFasL) and with cell surface Fas expression in patients with systemic lupus erythematosus (SLE), thus contributing to the dysregulated apoptosis typical of the disease. The methods include the following: Serum DNase I levels in patients and in controls were detected using the dot blot method and quantified by densitometry; sFas and sFasL were quantified using an ELISA system. Cell surface Fas expression was evaluated by FACS analysis. Apoptosis was studied by means of internucleosomal DNA degradation using a commercially available kit. The results are as follows: We found a significant difference in DNase I, sFas and sFasL serum levels between patients and controls. Levels of DNase I <7.79 ng ml(-1) are more represented in patients with SLE. Active SLE is strongly associated with high sFas levels and detectable sFasL. DNase I does not correlate with sFas or sFasL, whereas it correlates with T cell surface Fas expression that is higher in patients with active SLE than in healthy controls. Finally, administration of exogenous human recombinant DNase (hrDNase) I to freshly isolated T cells up-regulates cell surface Fas expression and induces increased susceptibility to Fas-mediated apoptosis. In conclusion, our findings confirm that DNase I is low in SLE and suggest that it may play a role in apoptosis in SLE by regulating the surface expression of the cell death molecule Fas. This role may contribute to explain the inefficacy of hrDNase I in SLE, a treatment proposed for the ability of DNase I to remove DNA from auto-antigenic nucleoprotein complexes.


PLOS ONE | 2013

In type 1 diabetes a subset of anti-coxsackievirus B4 antibodies recognize autoantigens and induce apoptosis of pancreatic beta cells.

Caterina Bason; Renata Lorini; Claudio Lunardi; Marzia Dolcino; Alessandro Giannattasio; Giuseppe d’Annunzio; Antonella Rigo; Nicoletta Pedemonte; Roberto Corrocher; Antonio Puccetti

Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells. The role played by autoantibodies directed against beta cells antigens in the pathogenesis of the disease is still unclear. Coxsackievirus B infection has been linked to the onset of type 1 diabetes; however its precise role has not been elucidated yet. To clarify these issues, we screened a random peptide library with sera obtained from 58 patients with recent onset type 1 diabetes, before insulin therapy. We identified an immunodominant peptide recognized by the majority of individual patients’sera, that shares homology with Coxsackievirus B4 VP1 protein and with beta-cell specific autoantigens such as phogrin, phosphofructokinase and voltage-gated L-type calcium channels known to regulate beta cell apoptosis. Antibodies against the peptide affinity-purified from patients’ sera, recognized the viral protein and autoantigens; moreover, such antibodies induced apoptosis of the beta cells upon binding the L-type calcium channels expressed on the beta cell surface, suggesting a calcium dependent mechanism. Our results provide evidence that in autoimmune diabetes a subset of anti-Coxsackievirus antibodies are able to induce apoptosis of pancreatic beta cells which is considered the most critical and final step in the development of autoimmune diabetes without which clinical manifestations do not occur.


Arthritis Research & Therapy | 2010

Gene expression profiling in circulating endothelial cells from systemic sclerosis patients shows an altered control of apoptosis and angiogenesis that is modified by iloprost infusion

Elisa Tinazzi; Marzia Dolcino; Antonio Puccetti; Antonella Rigo; Ruggero Beri; Maria Teresa Valenti; Roberto Corrocher; Claudio Lunardi

IntroductionCirculating endothelial cells are increased in patients affected by systemic sclerosis (SSc) and their number strongly correlates with vascular damage. The effects of iloprost in systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of iloprost infusion and gene expression in patients with systemic sclerosis.MethodsWe enrolled 50 patients affected by systemic sclerosis, 37 patients without and 13 patients with digital ulcers. Blood samples were collected from all patients before and 72 hours after either a single day or five days eight hours iloprost infusion. Blood samples were also collected from 50 sex- and age-matched healthy controls. Circulating endothelial cells and endothelial progenitors cells were detected in the peripheral blood of patients with systemic sclerosis by flow cytometry with a four-colour panel of antibodies. Statistical analysis was performed with the SPSS 16 statistical package.Circulating endothelial cells were then isolated from peripheral blood by immunomagnetic CD45 negative selection for the gene array study.ResultsThe number of both circulating endothelial cells and progenitors was significantly higher in patients affected by systemic sclerosis than in controls and among patients in those with digital ulcers than in patients without them. Circulating endothelial cells and progenitors number increased after iloprost infusion. Gene array analysis of endothelial cells showed a different transcriptional profile in patients compared to controls. Indeed, patients displayed an altered expression of genes involved in the control of apoptosis and angiogenesis. Iloprost infusion had a profound impact on endothelial cells gene expression since the treatment was able to modulate a very high number of transcripts.ConclusionsWe report here that circulating endothelial cells in patients with systemic sclerosis show an altered expression of genes involved in the control of apoptosis and angiogenesis. Moreover we describe that iloprost infusion has a strong effect on endothelial cells and progenitors since it is able to modulate both their number and their gene expression profile.


PLOS ONE | 2014

Crossreactive autoantibodies directed against cutaneous and joint antigens are present in psoriatic arthritis.

Marzia Dolcino; Claudio Lunardi; Andrea Ottria; Elisa Tinazzi; Giuseppe Patuzzo; Antonio Puccetti

Background Psoriatic arthritis (PsA) is a chronic inflammatory disease of unknown origin, characterized by erosions and new bone formation. Diagnosis of PsA is mainly clinical and there are no biomarkers available. Moreover in PsA autoantibodies have not been described so far. Indeed an autoimmune origin has been suggested but never proven. Aim of the study was to investigate the possible presence of autoantibodies typically associated with PsA. Methods We used pooled IgG immunoglobulins derived from 30 patients with PsA to screen a random peptide library in order to identify disease relevant autoantigen peptides. Results Among the selected peptides, one was recognised by nearly all the patients’ sera. The identified peptide (PsA peptide: TNRRGRGSPGAL) shows sequence similarities with skin autoantigens, such as fibrillin 3, a constituent of actin microfibrils, desmocollin 3, a constituent of the desmosomes and keratin 78, a component of epithelial cytoskeleton. Interestingly the PsA peptide shares homology with the nebulin-related anchoring protein (N-RAP), a protein localized in the enthesis (point of insertion of a tendon or ligament to the bone), which represents the first affected site during early PsA. Antibodies affinity purified against the PsA peptide recognize fibrillin, desmocollin, keratin and N-RAP. Moreover antibodies directed against the PsA peptide are detectable in 85% of PsA patients. Such antibodies are not present in healthy donors and are present in 13/100 patients with seroposive rheumatoid arthritis (RA). In seronegative RA these antibodies are detectable only in 3/100 patients. Conclusions Our results indicate that PsA is characterized by the presence of serum autoantibodies crossreacting with an epitope shared by skin and joint antigens.


Clinical & Developmental Immunology | 2012

Gene Expression Profiling in Dermatitis Herpetiformis Skin Lesions

Marzia Dolcino; E. Cozzani; S. Riva; A. Parodi; Elisa Tinazzi; Claudio Lunardi; Antonio Puccetti

Dermatitis herpetiformis (DH) is an autoimmune blistering skin disease associated with gluten-sensitive enteropathy (CD). In order to investigate the pathogenesis of skin lesions at molecular level, we analysed the gene expression profiles in skin biopsies from 6 CD patients with DH and 6 healthy controls using Affymetrix HG-U133A 2.0 arrays. 486 genes were differentially expressed in DH skin compared to normal skin: 225 were upregulated and 261 were downregulated. Consistently with the autoimmune origin of DH, functional classification of the differentially expressed genes (DEGs) indicates a B- and T-cell immune response (LAG3, TRAF5, DPP4, and NT5E). In addition, gene modulation provides evidence for a local inflammatory response (IL8, PTGFR, FSTL1, IFI16, BDKRD2, and NAMPT) with concomitant leukocyte recruitment (CCL5, ENPP2), endothelial cell activation, and neutrophil extravasation (SELL, SELE). DEGs also indicate overproduction of matrix proteases (MMP9, ADAM9, and ADAM19) and proteolytic enzymes (CTSG, ELA2, CPA3, TPSB2, and CMA1) that may contribute to epidermal splitting and blister formation. Finally, we observed modulation of genes involved in cell growth inhibition (CGREF1, PA2G4, and PPP2R1B), increased apoptosis (FAS, TNFSF10, and BASP1), and reduced adhesion at the dermal epidermal junction (PLEC1, ITGB4, and LAMA5). In conclusion, our results identify genes that are involved in the pathogenesis of DH skin lesions.


PLOS ONE | 2014

Gene Expression Profiling in Peripheral Blood Mononuclear Cells of Patients with Common Variable Immunodeficiency: Modulation of Adaptive Immune Response following Intravenous Immunoglobulin Therapy

Marzia Dolcino; Giuseppe Patuzzo; Alessandro Barbieri; Elisa Tinazzi; Monica Rizzi; Ruggero Beri; Giuseppe Argentino; Andrea Ottria; Claudio Lunardi; Antonio Puccetti

Background Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. Methods We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. Results A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23−CD27−IgM−IgG− B cells (centrocytes). Conclusions Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency.

Collaboration


Dive into the Marzia Dolcino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge