Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaaki Fujita is active.

Publication


Featured researches published by Masaaki Fujita.


Journal of Biological Chemistry | 2010

Direct binding of the EGF-like domain of neuregulin-1 to integrins (αvβ3 and α6β4) is involved in neuregulin-1/ErbB signaling

Katsuaki Ieguchi; Masaaki Fujita; Zi Ma; Parastoo Davari; Yukimasa Taniguchi; Kiyotoshi Sekiguchi; Bobby Z. Wang; Yoko K. Takada; Yoshikazu Takada

Integrin-growth factor receptor cross-talk plays a role in growth factor signaling, but the specifics are unclear. In a current model, integrins and growth factor receptors independently bind to their ligands (extracellular matrix and growth factors, respectively). We discovered that neuregulin-1 (NRG1), either as an isolated EGF-like domain or as a native multi-domain form, binds to integrins αvβ3 (with a KD of 1.36 × 10−7 m) and α6β4. Docking simulation predicted that three Lys residues at positions 180, 184, and 186 of the EGF-like domain are involved in integrin binding. Mutating these residues to Glu individually or in combination markedly suppressed integrin binding and ErbB3 phosphorylation. Mutating all three Lys residues to Glu (the 3KE mutation) did not affect the ability of NRG1 to bind to ErbB3 but markedly reduced the ability of NRG1 to induce ErbB3 phosphorylation and AKT and Erk1/2 activation in MCF-7 and T47D human breast cancer cells. This suggests that direct integrin binding to NRG1 is critical for NRG1/ErbB signaling. Notably, stimulation of cells with WT NRG1 induced co-precipitation of ErbB3 with α6β4 and with αvβ3 to a much lower extent. This suggests that WT NRG1 induces integrin-NRG1-ErbB3 ternary complex formation. In contrast, the 3KE mutant was much less effective in inducing ternary complex formation than WT NRG1, suggesting that this process depends on the ability of NRG1 to bind to integrins. These results suggest that direct NRG1-integrin interaction mediates integrin-ErbB cross-talk and that α6β4 plays a major role in NRG-ErbB signaling in these cancer cells.


Journal of Biological Chemistry | 2012

Cross-talk between Integrin α6β4 and Insulin-like Growth Factor-1 Receptor (IGF1R) through Direct α6β4 Binding to IGF1 and Subsequent α6β4-IGF1-IGF1R Ternary Complex Formation in Anchorage-independent Conditions

Masaaki Fujita; Katsuaki Ieguchi; Parastoo Davari; Satoshi Yamaji; Yukimasa Taniguchi; Kiyotoshi Sekiguchi; Yoko K. Takada; Yoshikazu Takada

Background: Integrin αvβ3-extracellular matrix interaction and/or αvβ3 binding to insulin-like growth factor-1 (IGF1; and integrin-IGF1-IGF1 receptor ternary complex formation) is critical for IGF signaling. Results: α6β4 directly bound to IGF1 and mediated IGF1 signaling through ternary complex formation. α6β4 is required when cell-matrix adhesion is reduced or in three-dimensional culture. Conclusion: α6β4-IGF1 binding is important for IGF signaling in anchorage-independent conditions. Significance: The integrin-IGF interaction is a novel therapeutic target. Integrin αvβ3 plays a role in insulin-like growth factor-1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk). The specifics of the cross-talk are, however, unclear. In a current model, “ligand occupancy” of αvβ3 (i.e. the binding of extracellular matrix proteins) enhances signaling induced by IGF1 binding to IGF1R. We recently reported that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation. Consistently, the integrin binding-defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, but it still binds to IGF1R. Like αvβ3, integrin α6β4 is overexpressed in many cancers and is implicated in cancer progression. Here, we discovered that α6β4 directly bound to IGF1, but not to R36E/R37E. Grafting the β4 sequence WPNSDP (residues 167–172), which corresponds to the specificity loop of β3, to integrin β1 markedly enhanced IGF1 binding to β1, suggesting that the WPNSDP sequence is involved in IGF1 recognition. WT IGF1 induced α6β4-IGF1-IGF1R ternary complex formation, whereas R36E/R37E did not. When cells were attached to matrix, exogenous IGF1 or α6β4 expression had little or no effect on intracellular signaling. When cell-matrix adhesion was reduced (in poly(2-hydroxyethyl methacrylate-coated plates), IGF1 induced intracellular signaling and enhanced cell survival in an α6β4-dependent manner. Also IGF1 enhanced colony formation in soft agar in an α6β4-dependent manner. These results suggest that IGF binding to α6β4 plays a major role in IGF signaling in anchorage-independent conditions, which mimic the in vivo environment, and is a novel therapeutic target.


PLOS ONE | 2013

A Dominant-Negative FGF1 Mutant (the R50E Mutant) Suppresses Tumorigenesis and Angiogenesis

Seiji Mori; Vu Tran; Kyoko Nishikawa; Teruya Kaneda; Yoshinosuke Hamada; Naomasa Kawaguchi; Masaaki Fujita; Yoko K. Takada; Nariaki Matsuura; Min Zhao; Yoshikazu Takada

Fibroblast growth factor-1 (FGF1) and FGF2 play a critical role in angiogenesis, a formation of new blood vessels from existing blood vessels. Integrins are critically involved in FGF signaling through crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and induces FGF receptor-1 (FGFR1)-FGF1-integrin αvβ3 ternary complex. We previously generated an integrin binding defective FGF1 mutant (Arg-50 to Glu, R50E). R50E is defective in inducing ternary complex formation, cell proliferation, and cell migration, and suppresses FGF signaling induced by WT FGF1 (a dominant-negative effect) in vitro. These findings suggest that FGFR and αvβ3 crosstalk through direct integrin binding to FGF, and that R50E acts as an antagonist to FGFR. We studied if R50E suppresses tumorigenesis and angiogenesis. Here we describe that R50E suppressed tumor growth in vivo while WT FGF1 enhanced it using cancer cells that stably express WT FGF1 or R50E. Since R50E did not affect proliferation of cancer cells in vitro, we hypothesized that R50E suppressed tumorigenesis indirectly through suppressing angiogenesis. We thus studied the effect of R50E on angiogenesis in several angiogenesis models. We found that excess R50E suppressed FGF1-induced migration and tube formation of endothelial cells, FGF1-induced angiogenesis in matrigel plug assays, and the outgrowth of cells in aorta ring assays. Excess R50E suppressed FGF1-induced angiogenesis in chick embryo chorioallantoic membrane (CAM) assays. Interestingly, excess R50E suppressed FGF2-induced angiogenesis in CAM assays as well, suggesting that R50E may uniquely suppress signaling from other members of the FGF family. Taken together, our results suggest that R50E suppresses angiogenesis induced by FGF1 or FGF2, and thereby indirectly suppresses tumorigenesis, in addition to its possible direct effect on tumor cell proliferation in vivo. We propose that R50E has potential as an anti-cancer and anti-angiogenesis therapeutic agent (“FGF1 decoy”).


Journal of Biological Chemistry | 2013

Insulin-like Growth Factor (IGF) Signaling Requires αvβ3-IGF1-IGF Type 1 Receptor (IGF1R) Ternary Complex Formation in Anchorage Independence, and the Complex Formation Does Not Require IGF1R and Src Activation

Masaaki Fujita; Yoko K. Takada; Yoshikazu Takada

Background: αvβ3 binds to IGF1, and the αvβ3-IGF1-IGF1R complex is formed in non-transformed cells. Results: IGF1 induces signals with the complex formation in anchorage independence. IGF1R or Src inhibitors did not suppress the complex formation. Conclusion: αvβ3-ECM interaction is not required for IGF signaling. The complex formation occurs before IGF1R activation. Significance: This study identifies new therapeutic targets in IGF signaling. Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling.


Journal of Immunology | 2012

Integrins αvβ3 and α4β1 Act as Coreceptors for Fractalkine, and the Integrin-Binding Defective Mutant of Fractalkine Is an Antagonist of CX3CR1

Masaaki Fujita; Yoko K. Takada; Yoshikazu Takada

The membrane-bound chemokine fractalkine (FKN, CX3CL1) on endothelial cells plays a role in leukocyte trafficking. The chemokine domain (FKN-CD) is sufficient for inducing FKN signaling (e.g., integrin activation), and FKN-CD binds to its receptor CX3CR1 on leukocytes. Whereas previous studies suggest that FKN-CD does not directly bind to integrins, our docking simulation studies predicted that FKN-CD directly interacts with integrin αvβ3. Consistent with this prediction, we demonstrated that FKN-CD directly bound to αvβ3 and α4β1 at a very high affinity (KD of 3.0 × 10−10 M to αvβ3 in 1 mM Mn2+). Also, membrane-bound FKN bound to integrins αvβ3 and α4β1, suggesting that the FKN-CD/integrin interaction is biologically relevant. The binding site for FKN-CD in αvβ3 was similar to those for other known αvβ3 ligands. Wild-type FKN-CD induced coprecipitation of integrins and CX3CR1 in U937 cells, suggesting that FKN-CD induces ternary complex formation (CX3CR1, FKN-CD, and integrin). Based on the docking model, we generated an integrin-binding defective FKN-CD mutant (the K36E/R37E mutant). K36E/R37E was defective in ternary complex formation and integrin activation, whereas K36E/R37E still bound to CX3CR1. These results suggest that FKN-CD binding to CX3CR1 is not sufficient for FKN signaling, and that FKN-CD binding to integrins as coreceptors and the resulting ternary complex formation are required for FKN signaling. Notably, excess K36E/R37E suppressed integrin activation induced by wild-type FKN-CD and effectively suppressed leukocyte infiltration in thioglycollate-induced peritonitis. These findings suggest that K36E/R37E acts as a dominant-negative CX3CR1 antagonist and that FKN-CD/integrin interaction is a novel therapeutic target in inflammatory diseases.


Journal of Biological Chemistry | 2013

An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R.

Masaaki Fujita; Katsuaki Ieguchi; Dora M. Cedano-Prieto; Andrew Fong; Charles L. Wilkerson; Jane Q. Chen; Mac Wu; Su Hao Lo; Anthony T.W. Cheung; Machelle D. Wilson; Robert D. Cardiff; Alexander D. Borowsky; Yoko K. Takada; Yoshikazu Takada

Background: The integrin binding-defective mutant of IGF1 (R36E/R37E) is functionally defective and does not induce ternary complex formation (integrin-IGF1-IGF1R). Results: R36E/R37E suppressed signaling induced by WT IGF1, the binding of WT IGF1 to cells, ternary complex formation, cell viability, and tumorigenesis. Conclusion: R36E/R37E is a dominant-negative antagonist of IGF signaling. Significance: R36E/R37E has potential as a therapeutic agent. Insulin-like growth factor-1 (IGF1) is a major therapeutic target for cancer. We recently reported that IGF1 directly binds to integrins (αvβ3 and α6β4) and induces ternary complex formation (integrin-IGF1-IGF1 receptor (IGF1R)) and that the integrin binding-defective mutant of IGF1 (R36E/R37E) is defective in signaling and ternary complex formation. These findings predict that R36E/R37E competes with WT IGF1 for binding to IGF1R and inhibits IGF signaling. Here, we described that excess R36E/R37E suppressed cell viability increased by WT IGF1 in vitro in non-transformed cells. We studied the effect of R36E/R37E on viability and tumorigenesis in cancer cell lines. We did not detect an effect of WT IGF1 or R36E/R37E in cancer cells under anchorage-dependent conditions. However, under anchorage-independent conditions, WT IGF1 enhanced cell viability and induced signals, whereas R36E/R37E did not. Notably, excess R36E/R37E suppressed cell viability and signaling induced by WT IGF1 under anchorage-independent conditions. Using cancer cells stably expressing WT IGF1 or R36E/R37E, we determined that R36E/R37E suppressed tumorigenesis in vivo, whereas WT IGF1 markedly enhanced it. R36E/R37E suppressed the binding of WT IGF1 to the cell surface and the subsequent ternary complex formation induced by WT IGF1. R36E/R37E suppressed activation of IGF1R by insulin. WT IGF1, but not R36E/R37E, induced ternary complex formation with the IGF1R/insulin receptor hybrid. These findings suggest that 1) IGF1 induces signals under anchorage-independent conditions and that 2) R36E/R37E acts as a dominant-negative inhibitor of IGF1R (IGF1 decoy). Our results are consistent with a model in which ternary complex formation is critical for IGF signaling.


Arthritis Research & Therapy | 2011

Histone deacetylase inhibition alters dendritic cells to assume a tolerogenic phenotype and ameliorates arthritis in SKG mice

Kenta Misaki; Akio Morinobu; Jun Saegusa; Shimpei Kasagi; Masaaki Fujita; Yoshiaki Miyamoto; Fumichika Matsuki; Shunichi Kumagai

IntroductionThe purpose of this study was to elucidate the effects of histone deacetylase inhibition on the phenotype and function of dendritic cells and on arthritis in SKG mice.MethodsArthritis was induced in SKG mice by zymosan A injection. Trichostatin A, a histone deacetylase inhibitor, was administered and its effects on arthritis were evaluated by joint swelling and histological evaluation. Interleukin-17 production in lymph node cells was determined by an enzyme-linked immunosorbent assay (ELISA). Foxp3 expression in lymph node cells and the phenotypes of splenic dendritic cells were examined by fluorescence-activated cell sorting (FACS). Bone marrow-derived dendritic cells (BM-DC) were generated with granulocyte macrophage colony-stimulating factor. The effects of trichostatin A on cell surface molecules, cytokine production, indoleamine 2,3-dioxygenase (IDO) expression and T cell stimulatory capacity were examined by FACS, ELISA, quantitative real-time polymerase chain reaction and Western blot, and the allo-mixed lymphocyte reaction, respectively.ResultsTrichostatin A, when administered before the onset of arthritis, prevented SKG mice from getting arthritis. Trichostatin A treatment also showed therapeutic effects on arthritis in SKG mice, when it was administered after the onset of arthritis. Trichostatin A treatment reduced Th17 cells and induced regulatory T cells in lymph node, and also decreased co-stimulatory molecule expression on splenic dendritic cells in vivo. In vitro, trichostatin A markedly suppressed zymosan A-induced interleukin-12 and interleukin-6 production by BM-DC and up-regulated IDO expression at mRNA and protein levels. Trichostatin A-treated BM-DC also showed less T cell stimulatory capacity.ConclusionsHistone deacetylase inhibition changes dendritic cells to a tolerogenic phenotype and ameliorates arthritis in SKG mice.


PLOS ONE | 2010

A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist.

Satoshi Yamaji; Jun Saegusa; Katsuaki Ieguchi; Masaaki Fujita; Seiji Mori; Yoko K. Takada; Yoshikazu Takada

Background Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation. Principal Findings We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function. Conclusions/Significance Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer.


PLOS ONE | 2014

The binding of monomeric C-reactive protein (mCRP) to integrins αvβ3 and α4β1 is related to its pro-inflammatory action

Masaaki Fujita; Yoko K. Takada; Yoshihiro Izumiya; Yoshikazu Takada

The prototypic acute phase reactant C-reactive protein (CRP) is not only a marker but also a potential contributor to inflammatory diseases. CRP exists as the circulating native, pentameric CRP (pCRP) and the monomeric isoform (mCRP), formed as a result of a dissociation process of pCRP. mCRP is highly pro-inflammatory, but pCRP is not. The mechanism of pro-inflammatory action of mCRP is unclear. We studied the role of integrins in pro-inflammatory action of mCRP. Docking simulation of interaction between mCRP and integrin αvβ3 predicted that mCRP binds to αvβ3 well. We found that mCRP actually bound to integrins αvβ3 and α4β1 well. Antagonists to αvβ3 or α4β1 effectively suppressed the interaction, suggesting that the interaction is specific. Using an integrin β1 mutant (β1-3-1) that has a small fragment from the ligand binding site of β3, we showed that mCRP bound to the classical RGD-binding site in αvβ3. We studied the role of integrins in CRP signaling in monocytic U937 cells. Integrins αvβ3 and α4β1 specifically mediated binding of mCRP to U937 cells. mCRP induced AKT phosphorylation, but not ERK1/2 phosphorylation, in U937 cells. Notably, mCRP induced robust chemotaxis in U937 cells, and antagonists to integrins αvβ3 and α4β1 and an inhibitor to phosphatidylinositide 3-kinase, but not an MEK inhibitor, effectively suppressed mCRP-induced chemotaxis in U937 cells. These results suggest that the integrin and AKT/phosphatidylinositide 3-kinase pathways play a role in pro-inflammatory action of mCRP in U937 cells. In contrast, pCRP is predicted to have a limited access to αvβ3 due to steric hindrance in the simulation. Consistent with the prediction, pCRP was much less effective in integrin binding, chemotaxis, or AKT phosphorylation. These findings suggest that the ability of CRP isoforms to bind to the integrins is related to their pro-inflammatory action.


Rheumatology International | 2008

Dermatomyositis associated with thyroid cancer

Masaaki Fujita; Saori Hatachi; Masato Yagita

We describe herein dermatomyositis (DM) associated with thyroid cancer in a 54-year-old woman. She was resistant to corticosteroids at first, but removal of the coexisting cancer resulted in improvement of DM. Reports on the association of DM with thyroid cancer are very few. However, recently, increasing incidence of thyroid cancer is pointed out. It is thought that increasing incidence reflects increased detection of subclinical disease due to increased diagnostic scrutiny, not an increase in the true occurrence of thyroid cancer. Thus, DM associated with thyroid cancer may be more frequent than we generally expected. We recommend that thyroid studies should be included in cancer investigations, particularly in DM cases resistant to corticosteroids.

Collaboration


Dive into the Masaaki Fujita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoko K. Takada

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kit S. Lam

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark J. Kurth

University of California

View shared research outputs
Top Co-Authors

Avatar

Min Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge