Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaaki Miyata is active.

Publication


Featured researches published by Masaaki Miyata.


Cell | 2000

Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis

Christopher J. Sinal; Masahiro Tohkin; Masaaki Miyata; Jerrold M. Ward; Gilles Lambert; Frank J. Gonzalez

Mice lacking the nuclear bile acid receptor FXR/BAR developed normally and were outwardly identical to wild-type littermates. FXR/BAR null mice were distinguished from wild-type mice by elevated serum bile acid, cholesterol, and triglycerides, increased hepatic cholesterol and triglycerides, and a proatherogenic serum lipoprotein profile. FXR/BAR null mice also had reduced bile acid pools and reduced fecal bile acid excretion due to decreased expression of the major hepatic canalicular bile acid transport protein. Bile acid repression and induction of cholesterol 7alpha-hydroxylase and the ileal bile acid binding protein, respectively, did not occur in FXR/BAR null mice, establishing the regulatory role of FXR/BAR for the expression of these genes in vivo. These data demonstrate that FXR/BAR is critical for bile acid and lipid homeostasis by virtue of its role as an intracellular bile acid sensor.


Journal of Biological Chemistry | 1999

Targeted Disruption of the Microsomal Epoxide Hydrolase Gene MICROSOMAL EPOXIDE HYDROLASE IS REQUIRED FOR THE CARCINOGENIC ACTIVITY OF 7,12-DIMETHYLBENZ[a]ANTHRACENE

Masaaki Miyata; Gen Kudo; Ying-Hue Lee; Tian J. Yang; Harry V. Gelboin; Pedro Fernandez-Salguero; Shioko Kimura; Frank J. Gonzalez

Microsomal epoxide hydrolase (mEH) is a conserved enzyme that is known to hydrolyze many drugs and carcinogens, and a few endogenous steroids and bile acids. mEH-null mice were produced and found to be fertile and have no phenotypic abnormalities thus indicating that mEH is not critical for reproduction and physiological homeostasis. mEH has also been implicated in participating in the metabolic activation of polycyclic aromatic hydrocarbon carcinogens. Embryonic fibroblast derived from the mEH-null mice were unable to produce the proximate carcinogenic metabolite of 7,12-dimethylbenz[a]anthracene (DMBA), a widely studied experimental prototype for the polycylic aromatic hydrocarbon class of chemical carcinogens. They were also resistant to DMBA-mediated toxicity. Using the two-stage initiation-promotion skin cancer bioassay, the mEH-null mice were found to be highly resistant to DMBA-induced carcinogenesis. In a complete carcinogenesis bioassay, the mEH mice were totally resistant to tumorigenesis. These data establish in an intact animal model that mEH is a key genetic determinant in DMBA carcinogenesis through its role in production of the ultimate carcinogenic metabolite of DMBA, the 3,4-diol-1,2-epoxide.


Journal of Biological Chemistry | 2003

Protective role of hydroxysteroid sulfotransferase in lithocholic acid-induced liver toxicity.

Hirotaka Kitada; Masaaki Miyata; Toshifumi Nakamura; Aki Tozawa; Wataru Honma; Miki Shimada; Kiyoshi Nagata; Christopher J. Sinal; Grace L. Guo; Frank J. Gonzalez; Yasushi Yamazoe

Supplement of 1% lithocholic acid (LCA) in the diet for 5–9 days resulted in elevated levels of the marker for liver damage aspartate aminotransferase and alkaline phosphatase activities in both farnesoid X receptor (FXR)-null and wild-type female mice. The levels were clearly higher in wild-type mice than in FXR-null mice, despite the diminished expression of a bile salt export pump in the latter. Consistent with liver toxicity marker activities, serum and liver levels of bile acids, particularly LCA and taurolithocholic acid, were clearly higher in wild-type mice than in FXR-null mice after 1% LCA supplement. Marked increases in hepatic sulfating activity for LCA (5.5-fold) and hydroxysteroid sulfotransferase (St) 2a (5.8-fold) were detected in liver of FXR-null mice. A 7.4-fold higher 3α-sulfated bile acid concentration was observed in bile of FXR-null mice fed an LCA diet compared with that of wild-type mice. Liver St2a content was inversely correlated with levels of alkaline phosphatase. In contrast, microsomal LCA 6β-hydroxylation was not increased and was in fact lower in FXR-null mice compared in wild-type mice. Clear decreases in mRNA encoding sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide 1, and liver-specific organic anion transporter-1 function in bile acid import were detected in LCA-fed mice. These transporter levels are higher in FXR-null mice than wild-type mice after 1% LCA supplement. No obvious changes were detected in the Mrp2, Mrp3, and Mrp4 mRNAs. These results indicate hydroxysteroid sulfotransferase-mediated LCA sulfation as a major pathway for protection against LCA-induced liver damage. Furthermore, Northern blot analysis using FXR-null, pregnane X receptor-null, and FXR-pregnane X receptor double-null mice suggests a repressive role of these nuclear receptors on basal St2a expression.


Journal of Pharmacology and Experimental Therapeutics | 2009

Administration of Ampicillin Elevates Hepatic Primary Bile Acid Synthesis through Suppression of Ileal Fibroblast Growth Factor 15 Expression

Masaaki Miyata; Yuki Takamatsu; Hideaki Kuribayashi; Yasushi Yamazoe

Administration of the antibacterial drug ampicillin (ABPC) significantly increased hepatic bile acid concentrations. In the present study, we investigated the mechanisms for the elevation of bile acid levels in ABPC-treated mice. Hepatic microsomal cholesterol 7α-hydroxylation and CYP7A1 mRNA level were increased 2.0-fold in ABPC-treated mice despite higher bile acid levels in the liver and small intestinal lumen. A significant change in hepatic small heterodimer partner (SHP) mRNA level was not observed in ABPC-treated mice, whereas a marked decrease in ileal fibroblast growth factor 15 (FGF15) mRNA level was observed (3% of vehicle-treated mice). These phenomena were also observed in mice cotreated with bacitracin/streptomycin/neomycin, which are barely absorbed from the intestine. Primary bile acid contents in the small intestinal lumen were increased in ABPC-treated mice, whereas secondary bile acid, deoxycholic acid (DCA), contents were reduced to below detection limits (<0.01 μmol). In ABPC-treated mice, cotreatment with tauroDCA reversed reductions in ileal FGF15 mRNA level. Ileal SHP mRNA level was, however, not decreased in ABPC-treated mice. ABPC administration to farnesoid X receptor (Fxr)-null mice also decreased ileal FGF15 mRNA levels and secondary bile acid content in the small intestinal lumen. These results suggest that ABPC administration elevates hepatic primary bile acid synthesis, at least in part, through suppression of ileal FGF15 expression.


Journal of Pharmacology and Experimental Therapeutics | 2004

Role of Farnesoid X Receptor in the Enhancement of Canalicular Bile Acid Output and Excretion of Unconjugated Bile Acids: A Mechanism for Protection against Cholic Acid-Induced Liver Toxicity

Masaaki Miyata; Aki Tozawa; Hijiri Otsuka; Toshifumi Nakamura; Kiyoshi Nagata; Frank J. Gonzalez; Yasushi Yamazoe

Mice lacking the farnesoid X receptor (FXR) involved in the maintenance of hepatic bile acid levels are highly sensitive to cholic acid-induced liver toxicity. Serum aspartate aminotransferase (AST) activity was elevated 15.7-fold after feeding a 0.25% cholic acid diet, whereas only slight increases in serum AST (1.7- and 2.5-fold) were observed in wild-type mice fed 0.25 and 1% cholic acid diet, respectively. Bile salt export pump mRNA and protein levels were increased in wild-type mice fed 1% cholic acid diet (2.1- and 3.0-fold) but were decreased in FXR-null mice fed 0.25% cholic acid diet. The bile acid output rate was 2.0- and 3.7-fold higher after feeding of 0.25 and 1.0% cholic acid diet in wild-type mice, respectively. On the other hand, no significant increase in bile acid output rate was observed in FXR-null mice fed 0.25% cholic acid diet in contrast to a significant decrease observed in mice fed a 1.0% cholic acid diet in spite of the markedly higher levels of hepatic tauro-conjugated bile acids. Unconjugated cholic acid was not detected in the bile of wild-type mice fed a control diet, but it was readily detected in wild-type mice fed 1% cholic acid diet. The ratio of biliary unconjugated cholic acid to total cholic acid (unconjugated cholic acid and tauro-conjugated cholic acid) reached 30% under conditions of hepatic taurine depletion. These results suggest that the cholic acid-induced enhancement of canalicular bile acid output rates and excretion of unconjugated bile acids are involved in adaptive responses for prevention of cholic acid-induced toxicity.


Journal of Pharmacology and Experimental Therapeutics | 2011

Enterobacteria Modulate Intestinal Bile Acid Transport and Homeostasis through Apical Sodium-Dependent Bile Acid Transporter (SLC10A2) Expression

Masaaki Miyata; Hiroki Yamakawa; Mayumi Hamatsu; Hideaki Kuribayashi; Yuki Takamatsu; Yasushi Yamazoe

In our study, ampicillin (AMP)-mediated decrease of enterobacteria caused increases in hepatic bile acid concentration through (at least in part) elevation of bile acid synthesis in C57BL/6N mice. We investigated the involvement of enterobacteria on intestinal bile acid absorption in AMP-treated mice in the present study. Fecal enterobacterial levels and fecal bile acid excretion rates were markedly decreased in mice treated with AMP (100 mg/kg) for 3 days, whereas bile acid concentrations in portal blood were significantly increased compared with those in mice treated with a vehicle. Ileal apical sodium-dependent bile acid transporter (SLC10A2) mRNA levels and ileal SLC10A2 protein levels in brush-border membranes were significantly increased compared with those in mice treated with the vehicle. In AMP-treated mice, total bile acid levels were increased, whereas levels of enterobacteria-biotransformed bile acid, taurodeoxycholic acid, and cholic acid were decreased in intestinal lumen. These phenomena were also observed in farnesoid X receptor-null mice treated with AMP for 3 days. Discontinuation of AMP administration after 3 days (vehicle administration for 4 days) increased levels of fecal enterobacteria, fecal bile acid excretion, and taurodeoxycholic acid and cholic acid in the intestinal lumen, whereas the discontinuation decreased ileal SLC10A2 expression and bile acid concentrations in the portal blood. Coadministration of taurodeoxycholic acid or cholic acid decreased ileal SLC10A2 expression in mice treated with AMP. These results suggest that enterobacteria-mediated bile acid biotransformation modulates intestinal bile acid transport and homeostasis through down-regulation of ileal SLC10A2 expression.


Cancer Letters | 2002

Suppression of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced DNA damage in rat colon after grapefruit juice intake

Masaaki Miyata; Hiroki Takano; Koichi Takahashi; Yu F. Sasaki; Yasushi Yamazoe

The influence of grapefruit juice intake on 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced colon DNA damage was examined using comet assay in F344 rats given 60 mg/kg of PhIP by gavage. F344 rats allowed free access to grapefruit juice for 5 days experienced clearly reduced DNA damage in the colon to a 40% level of control rats. The suppression of PhIP-induced colon DNA damage depended on the grapefruit juice concentrations. The serum concentration of PhIP was compared between grapefruit juice-pretreated and non-pretreated rats, but showed no significant difference in the areas under their concentration-time curves, peak values and half lives of PhIP. Furthermore, no obvious difference was found in the liver capacity for mutagenic activation of PhIP in Ames assay between grapefruit juice-pretreated and non-pretreated rats. These results suggest that grapefruit juice suppresses PhIP-induced colon DNA damage by a mechanism independent of PhIP absorption in the intestine.


European Journal of Pharmacology | 2012

Enterobacteria-mediated deconjugation of taurocholic acid enhances ileal farnesoid X receptor signaling.

Hideaki Kuribayashi; Masaaki Miyata; Hiroki Yamakawa; Kouichi Yoshinari; Yasushi Yamazoe

Enterobacteria are known to deconjugate amino acid-conjugated bile acids in the intestine. Administration of ampicillin (ABPC; 3 days, 100mg/kg) decreased the expression of ileal farnesoid X receptor (Fxr) target genes, and increased the levels of total bile acids in the intestinal lumen. The primary tauro-conjugates of cholic acid (TCA) and beta-muricholic acid (TβMCA) levels were increased, whereas the primary unconjugates, cholic acid (CA) and beta-muricholic acid (βMCA), levels decreased to below detectable levels (<0.01μmol) in ABPC-treated mice. The effects of individual bile acid on expression of the ileal farnesoid X receptor target genes were examined in ABPC-treated mice. The expression of ileal farnesoid X receptor target genes in ABPC-treated mice was clearly enhanced after CA (500mg/kg), but not TCA (500mg/kg) cotreatment. Their levels in control mice were enhanced after either CA or TCA-cotreatment. Unconjugated CA levels in the intestinal lumen and portal vein were increased in both ABPC-treated and control mice. Reduced ileal Fgf15 and Shp mRNA levels in ABPC-treated mice were also increased after CA (100mg/kg) cotreatment at which luminal CA levels was restored to the level in controls, but was unaffected by βMCA (100mg/kg) cotreatment. In addition, no increase in ileal Shp, Ibabp or Ostα mRNA levels was observed even after CA (500mg/kg) cotreatment in ABPC-treated farnesoid X receptor-null mice despite increased CA levels in the intestinal lumen. These results suggest the role of enterobacteria in bile acid-mediated enhancement of ileal farnesoid X receptor signaling by TCA deconjugation.


Drug Metabolism and Disposition | 2009

Role of Enzymatic N-Hydroxylation and Reduction in Flutamide Metabolite-Induced Liver Toxicity

Masato Ohbuchi; Masaaki Miyata; Daichi Nagai; Miki Shimada; Kouichi Yoshinari; Yasushi Yamazoe

Flutamide is used for prostate cancer therapy but occasionally induces severe liver injury. Flutamide is hydrolyzed in the body into 5-amino-2-nitrobenzotrifluoride (FLU-1) and then further oxidized. In our previous study, N-hydroxy FLU-1 (FLU-1 N-OH) was detected in the urine of patients and exhibited cytotoxicity in rat primary hepatocytes. In the present study, we have assessed the roles of FLU-1 N-oxidation and hepatic glutathione (GSH) depletion in liver injury. FLU-1 (200 mg/kg p.o.) was administered to C57BL/6 mice for 5 days together with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) (3 mg/kg i.p.) for the first 3 days. Mice were fasted for the last 2 days to deplete hepatic GSH. Administration of FLU-1 alone did not affect serum alanine aminotransferase activities (ALT), whereas coadministration of FLU-1 and TCPOBOP significantly increased ALT in fasted mice but not in nonfasted mice. Microsomal FLU-1 N-hydroxylation was enhanced approximately 5 times by TCPOBOP treatment. Flutamide metabolite-protein adducts were detected in liver microsomes incubated with FLU-1 N-OH, but not with FLU-1 and flutamide, by immunoblotting using antiflutamide antiserum. In the presence of mouse liver cytosol, FLU-1 N-OH was reduced back into FLU-1. This enzymatic reduction required NAD(P)H as a cofactor. The reduction was enhanced by the coexistence of NAD(P)H and GSH, whereas it was markedly inhibited by allopurinol (20 μM). By using purified bovine xanthine oxidase, the reduction was observed in the presence of NAD(P)H. These results suggest that FLU-1 N-OH is involved in flutamide-induced hepatotoxicity and that cytosolic reduction of FLU-1 N-OH plays a major role in protection against flutamide-induced hepatotoxicity.


PLOS ONE | 2013

Xenobiotic-Induced Hepatocyte Proliferation Associated with Constitutive Active/Androstane Receptor (CAR) or Peroxisome Proliferator-Activated Receptor α (PPARα) Is Enhanced by Pregnane X Receptor (PXR) Activation in Mice

Ryota Shizu; Satoshi Benoki; Yuki Numakura; Susumu Kodama; Masaaki Miyata; Yasushi Yamazoe; Kouichi Yoshinari

Xenobiotic-responsive nuclear receptors pregnane X receptor (PXR), constitutive active/androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα) play pivotal roles in the metabolic functions of the liver such as xenobiotics detoxification and energy metabolism. While CAR or PPARα activation induces hepatocyte proliferation and hepatocarcinogenesis in rodent models, it remains unclear whether PXR activation also shows such effects. In the present study, we have investigated the role of PXR in the xenobiotic-induced hepatocyte proliferation with or without CAR activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) and phenobarbital, or PPARα activation by Wy-14643 in mice. Treatment with TCPOBOP or phenobarbital increased the percentage of Ki-67-positive nuclei as well as mRNA levels of cell proliferation-related genes in livers as expected. On the other hand, treatment with the PXR activator pregnenolone 16α-carbonitrile (PCN) alone showed no such effects. Surprisingly, PCN co-treatment significantly augmented the hepatocyte proliferation induced by CAR activation with TCPOBOP or phenobarbital in wild-type mice but not in PXR-deficient mice. Intriguingly, PXR activation also augmented the hepatocyte proliferation induced by Wy-14643 treatment. Moreover, PCN treatment increased the RNA content of hepatocytes, suggesting the induction of G0/G1 transition, and reduced mRNA levels of Cdkn1b and Rbl2, encoding suppressors of cell cycle initiation. Our present findings indicate that xenobiotic-induced hepatocyte proliferation mediated by CAR or PPARα is enhanced by PXR co-activation despite that PXR activation alone does not cause the cell proliferation in mouse livers. Thus PXR may play a novel and unique role in the hepatocyte/liver hyperplasia upon exposure to xenobiotics.

Collaboration


Dive into the Masaaki Miyata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyoshi Nagata

Tohoku Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Frank J. Gonzalez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shogo Ozawa

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge