Masafumi Saijo
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masafumi Saijo.
Cell | 2003
Regina Groisman; Jolanta Polanowska; Isao Kuraoka; Jun-ichi Sawada; Masafumi Saijo; Ronny Drapkin; Alexei F. Kisselev; Kiyoji Tanaka; Yoshihiro Nakatani
Nucleotide excision repair (NER) is a major cellular defense against the carcinogenic effects of ultraviolet light from the sun. Mutational inactivation of NER proteins, like DDB and CSA, leads to hereditary diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). Here, we show that DDB2 and CSA are each integrated into nearly identical complexes via interaction with DDB1. Both complexes contain cullin 4A and Roc1 and display ubiquitin ligase activity. They also contain the COP9 signalosome (CSN), a known regulator of cullin-based ubiquitin ligases. Strikingly, CSN differentially regulates ubiquitin ligase activity of the DDB2 and CSA complexes in response to UV irradiation. Knockdown of CSN with RNA interference leads to defects in NER. These results suggest that the distinct UV response of the DDB2 and CSA complexes is involved in diverse mechanisms of NER.
Cell | 2005
Kaoru Sugasawa; Yuki Okuda; Masafumi Saijo; Ryotaro Nishi; Noriyuki Matsuda; Gilbert Chu; Toshio Mori; Shigenori Iwai; Keiji Tanaka; Kiyoji Tanaka; Fumio Hanaoka
The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC.
The EMBO Journal | 2006
Hideo Nishitani; Nozomi Sugimoto; Vassilis Roukos; Yohsuke Nakanishi; Masafumi Saijo; Chikashi Obuse; Toshiki Tsurimoto; Keiichi I. Nakayama; Keiko Nakayama; Masatoshi Fujita; Zoi Lygerou; Takeharu Nishimoto
Replication licensing is carefully regulated to restrict replication to once in a cell cycle. In higher eukaryotes, regulation of the licensing factor Cdt1 by proteolysis and Geminin is essential to prevent re‐replication. We show here that the N‐terminal 100 amino acids of human Cdt1 are recognized for proteolysis by two distinct E3 ubiquitin ligases during S–G2 phases. Six highly conserved amino acids within the 10 first amino acids of Cdt1 are essential for DDB1‐Cul4‐mediated proteolysis. This region is also involved in proteolysis following DNA damage. The second E3 is SCF‐Skp2, which recognizes the Cy‐motif‐mediated Cyclin E/A‐cyclin‐dependent kinase‐phosphorylated region. Consistently, in HeLa cells cosilenced of Skp2 and Cul4, Cdt1 remained stable in S–G2 phases. The Cul4‐containing E3 is active during ongoing replication, while SCF‐Skp2 operates both in S and G2 phases. PCNA binds to Cdt1 through the six conserved N‐terminal amino acids. PCNA is essential for Cul4‐ but not Skp2‐directed degradation during DNA replication and following ultraviolet‐irradiation. Our data unravel multiple distinct pathways regulating Cdt1 to block re‐replication.
Nature Genetics | 2012
Xue Zhang; Katsuyoshi Horibata; Masafumi Saijo; Chie Ishigami; Akiko Ukai; Shin-ichiro Kanno; Hidetoshi Tahara; Edward G Neilan; Masamitsu Honma; Takehiko Nohmi; Akira Yasui; Kiyoji Tanaka
UV-sensitive syndrome (UVSS) is an autosomal recessive disorder characterized by photosensitivity and deficiency in transcription-coupled repair (TCR), a subpathway of nucleotide-excision repair that rapidly removes transcription-blocking DNA damage. Cockayne syndrome is a related disorder with defective TCR and consists of two complementation groups, Cockayne syndrome (CS)-A and CS-B, which are caused by mutations in ERCC8 (CSA) and ERCC6 (CSB), respectively. UVSS comprises three groups, UVSS/CS-A, UVSS/CS-B and UVSS-A, caused by mutations in ERCC8, ERCC6 and an unidentified gene, respectively. Here, we report the cloning of the gene mutated in UVSS-A by microcell-mediated chromosome transfer. The predicted human gene UVSSA (formerly known as KIAA1530) corrects defective TCR in UVSS-A cells. We identify three nonsense and frameshift UVSSA mutations in individuals with UVSS-A, indicating that UVSSA is the causative gene for this syndrome. The UVSSA protein forms a complex with USP7 (ref. 8), stabilizes ERCC6 and restores the hypophosphorylated form of RNA polymerase II after UV irradiation.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Shinya Kamiuchi; Masafumi Saijo; Elisabetta Citterio; Martijn de Jager; Jan H.J. Hoeijmakers; Kiyoji Tanaka
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. By allowing rapid resumption of RNA synthesis, the process is of major importance for cellular resistance to transcription-blocking genotoxic damage. Mutations in the Cockayne syndrome group A or B (CSA or CSB) gene result in defective TCR. However, the exact mechanism of TCR in mammalian cells remains to be elucidated. We found that CSA protein is rapidly translocated to the nuclear matrix after UV irradiation. The translocation of CSA was independent of Xeroderma pigmentosum group C, which is specific to the global genome repair subpathway of nucleotide excision repair (NER) and of the core NER factor Xeroderma pigmentosum group A but required the CSB protein. In UV-irradiated cells, CSA protein colocalized with the hyperphosphorylated form of RNA polymerase II, engaged in transcription elongation. The translocation of CSA was also induced by treatment of the cells with cisplatin or hydrogen peroxide, both of which produce damage that is subjected to TCR but not induced by treatment with dimethyl sulfate, which produces damage that is not subjected to TCR. The hydrogen peroxide-induced translocation of CSA was also CSB dependent. These findings establish a link between TCR and the nuclear matrix mediated by CSA.
Nature Structural & Molecular Biology | 1998
Takahisa Ikegami; Isao Kuraoka; Masafumi Saijo; Naohiko Kodo; Yoshimasa Kyogoku; Kosuke Morikawa; Kiyoji Tanaka; Masahiro Shirakawa
The solution structure of the central domain of the human nucleotide excision repair protein XPA, which binds to damaged DNA and replication protein A (RPA), was determined by nuclear magnetic resonance (NMR) spectroscopy. The central domain consists of a zinc-containing subdomain and a C-terminal subdomain. The zinc-containing subdomain has a compact globular structure and is distinct from the zinc-fingers found in transcription factors. The C-terminal subdomain folds into a novel α/β structure with a positively charged superficial cleft. From the NMR spectra of the complexes, DNA and RPA binding surfaces are suggested.
Journal of Biological Chemistry | 1997
Silvano Nocentini; Frédéric Coin; Masafumi Saijo; Kiyoji Tanaka; Jean-Marc Egly
The human basal transcription factor IIH (TFIIH) is an essential component of the nucleotide excision repair machinery. TFIIH is required for reaction steps concomitant with or prior to the formation of dual incisions in the damaged DNA strand. To understand the mechanism underlying the recruitment of TFIIH to DNA damage sites we have analyzed i) the direct affinity of TFIIH for damaged or undamaged DNA and ii) the interaction of TFIIH with XPA·DNA complexes, formed using unirradiated or UV-irradiated DNA. Filter binding assays showed that TFIIH has some affinity for the DNA, but in contrast to XPA, does not show any preference for UV-irradiated DNA. Pull-down experiments demonstrated that TFIIH binds to XPA·DNA complexes in an UV damage-dependent manner by a direct protein-protein interaction with XPA. We propose that an enhancement of the affinity of XPA protein for TFIIH could arise from conformational changes of XPA when it binds to UV lesions on the DNA.
Mutation Research-dna Repair | 1996
Isao Kuraoka; Eugene Hayato Morita; Masafumi Saijo; Toshiro Matsuda; Kousuke Morikawa; Masahiro Shirakawa; Kiyoji Tanaka
The XPA (xeroderma pigmentosum group A) protein is a zinc metalloprotein consisting of 273 amino acids which binds preferentially to UV- or chemical carcinogen-damaged DNA, suggesting that it is involved in the recognition of several types of DNA damage during nucleotide excision repair processes. Here we identify a DNA binding domain of the XPA protein. The region of the XPA protein responsible for preferential binding to DNA damaged by UV or cis-diammine-dichloroplatinum(II) (cisplatin) is contained within a truncated derivative of the XPA protein, MF122, consisting of 122 amino acids and containing a C4 type zinc finger motif. CD (circular dichroism) measurements of the MF122 protein showed that it has a helix-rich secondary structure, suggesting that it is a discretely folded, functional mini-domain. The MF122 protein should be useful for structural investigation of the XPA protein and of its interaction with damaged DNA.
Journal of Biological Chemistry | 2008
Isao Kuraoka; Shinsuke Ito; Tadashi Wada; Mika Hayashida; Lily Lee; Masafumi Saijo; Yoshimichi Nakatsu; Megumi Matsumoto; Tsukasa Matsunaga; Hiroshi Handa; Jun Qin; Yoshihiro Nakatani; Kiyoji Tanaka
Nucleotide excision repair is a versatile repair pathway that counteracts the deleterious effects of various DNA lesions. In nucleotide excision repair, there is a transcription-coupled repair (TCR) pathway that focuses on DNA damage that blocks RNA polymerase IIo in transcription elongation. XAB2 (XPA-binding protein 2), containing tetratricopeptide repeats, has been isolated by virtue of its ability to interact with xeroderma pigmentosum group A protein (XPA). Moreover, XAB2 has been shown to interact with Cockayne syndrome group A and B proteins (CSA and CSB) and RNA polymerase II, as well as XPA, and is involved in TCR and transcription. Here we purified XAB2 as a multimeric protein complex consisting of hAquarius, XAB2, hPRP19, CCDC16, hISY1, and PPIE, which are involved in pre-mRNA splicing. Knockdown of XAB2 with small interfering RNA in HeLa cells resulted in a hypersensitivity to killing by UV light and a decreased recovery of RNA synthesis after UV irradiation and regular RNA synthesis. Enhanced interaction of XAB2 with RNA polymerase IIo or XPA was observed in cells treated with DNA-damaging agents, indicating DNA damage-responsive activity of the XAB2 complex. These results indicated that the XAB2 complex is a multifunctional factor involved in pre-mRNA splicing, transcription, and TCR.
Molecular and Cellular Biology | 2010
Arato Takedachi; Masafumi Saijo; Kiyoji Tanaka
ABSTRACT UV-damaged-DNA-binding protein (UV-DDB) is a heterodimer comprised of DDB1 and DDB2 and integrated in a complex that includes a ubiquitin ligase component, cullin 4A, and Roc1. Here we show that the ubiquitin ligase activity of the DDB2 complex is required for efficient global genome nucleotide excision repair (GG-NER) in chromatin. Mutant DDB2 proteins derived from xeroderma pigmentosum group E patients are not able to mediate ubiquitylation around damaged sites in chromatin. We also found that CSN, a negative regulator of cullin-based ubiquitin ligases, dissociates from the DDB2 complex when the complex binds to damaged DNA and that XPC and Ku oppositely regulate the ubiquitin ligase activity, especially around damaged sites. Furthermore, the DDB2 complex-mediated ubiquitylation plays a role in recruiting XPA to damaged sites. These findings shed some light on the early stages of GG-NER.