Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahide Yoshida is active.

Publication


Featured researches published by Masahide Yoshida.


The Journal of Neuroscience | 2009

Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice

Masahide Yoshida; Yuki Takayanagi; Kiyoshi Inoue; Tadashi Kimura; Larry J. Young; Tatsushi Onaka; Katsuhiko Nishimori

The oxytocin receptor has been implicated in the regulation of reproductive physiology as well as social and emotional behaviors. The neurochemical mechanisms by which oxytocin receptor modulates social and emotional behavior remains elusive, in part because of a lack of sensitive and selective antibodies for cellular localization. To more precisely characterize oxytocin receptor-expressing neurons within the brain, we generated an oxytocin receptor-reporter mouse in which part of the oxytocin receptor gene was replaced with Venus cDNA (a variant of yellow fluorescent protein). Examination of the Venus expression revealed that, in the raphe nuclei, about one-half of tryptophan hydroxylase-immunoreactive neurons were positive for Venus, suggesting a potential role for oxytocin in the modulation of serotonin release. Oxytocin infusion facilitated serotonin release within the median raphe nucleus and reduced anxiety-related behavior. Infusion of a 5-HT2A/2C receptor antagonist blocked the anxiolytic effect of oxytocin, suggesting that oxytocin receptor activation in serotonergic neurons mediates the anxiolytic effects of oxytocin. This is the first demonstration that oxytocin may regulate serotonin release and exert anxiolytic effects via direct activation of oxytocin receptor expressed in serotonergic neurons of the raphe nuclei. These results also have important implications for psychiatric disorders such as autism and depression in which both the oxytocin and serotonin systems have been implicated.


Progress in Brain Research | 2008

New aspects of oxytocin receptor function revealed by knockout mice: sociosexual behaviour and control of energy balance

Katsuhiko Nishimori; Yuki Takayanagi; Masahide Yoshida; Yoshiyuki Kasahara; Larry J. Young; Masaki Kawamata

To further define the function of the oxytocin receptor (OXTR) in vivo, we generated mice deficient in the Oxtr gene (Oxtr-/-). Oxtr-/- mice had no obvious deficits in fertility or sexual behaviour, but displayed several aberrations in social behaviours, including male aggression, and mother-offspring interaction. In addition, they showed novel physiological defects including obesity, and dysfunction in body temperature control when exposed to cold. We review here our new findings with Oxtr-/- mice, and introduce newly generated Oxtr-Venus knockin mice as a potential tool for examining molecular physiology of Oxtr-neurons.


Journal of Neuroendocrinology | 2012

Roles of Oxytocin Neurones in the Control of Stress, Energy Metabolism, and Social Behaviour

Tatsushi Onaka; Yuki Takayanagi; Masahide Yoshida

Oxytocin neurones are activated by stressful stimuli, food intake and social attachment. Activation of oxytocin neurones in response to stressful stimuli or food intake is mediated, at least in part, by noradrenaline/prolactin‐releasing peptide (PrRP) neurones in the nucleus tractus solitarius, whereas oxytocin neurones are activated after social stimuli via medial amygdala neurones. Activation of oxytocin neurones induces the release of oxytocin not only from their axon terminals, but also from their dendrites. Oxytocin acts locally where released or diffuses and acts on remote oxytocin receptors widely distributed within the brain, resulting in anxiolytic, anorexic and pro‐social actions. The action sites of oxytocin appear to be multiple. Oxytocin shows anxiolytic actions, at least in part, via serotoninergic neurones in the median raphe nucleus, has anorexic actions via pro‐opiomelanocortin neurones in the nucleus tractus solitarius and facilitates social recognition via the medial amygdala. Stress, obesity and social isolation are major risk factors for mortality in humans. Thus, the oxytocin–oxytocin receptor system is a therapeutic target for the promotion of human health.


PLOS ONE | 2010

Oxytocin Signaling in Mouse Taste Buds

Michael S. Sinclair; Isabel Perea-Martinez; Gennady Dvoryanchikov; Masahide Yoshida; Katsuhiko Nishimori; Stephen D. Roper; Nirupa Chaudhari

Background The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Methodology/Principal Findings Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 ∼33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. Conclusions/Significance We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.


Neuroscience Letters | 2011

Distribution and identity of neurons expressing the oxytocin receptor in the mouse spinal cord

Ludovic Wrobel; Ara Schorscher-Petcu; Anouk Dupré; Masahide Yoshida; Katsuhiko Nishimori; Eliane Tribollet

Oxytocin can influence various spinal functions. However, little is known about the spinal neuronal networks responsible for oxytocin effects. The aim of this study was to localize and characterize spinal neurons expressing oxytocin receptors. We used an oxytocin receptor-reporter mouse in which the fluorescent protein Venus is expressed under the control of the oxytocin receptor gene promoter. At all segmental levels, Venus-expressing neurons were most numerous in the substantia gelatinosa, mingled with protein kinase Cγ interneurons in the innermost layer of the inner lamina II, which, in contrast to the outer two thirds of this layer, does not receive nociceptive input. Venus-expressing neurons were also observed in the intermediolateral and sacral parasympathetic nuclei, where they represented about 5% of presumed preganglionic neurons identified by choline acetyltransferase immunoreactivity. Finally, Venus immunoreactivity was detected in lumbar and sacral dorsal gray commissures as well as in isolated neurons scattered in different regions of the dorsal horn. Altogether, our results establish the location of neurons putatively involved in oxytocin modulation of spinal functions, in particular of sexual functioning and nociception.


Neuroscience Letters | 2015

Activation of hypothalamic oxytocin neurons following tactile stimuli in rats.

Shota Okabe; Masahide Yoshida; Yuki Takayanagi; Tatsushi Onaka

Gentle touching or stroking has anxiolytic actions and contributes to the establishment of an intimate relationship between individuals. Oxytocin administration also has anxiolytic actions and facilitates social behaviors. In this study, we examined effects of stroking stimuli on activation of oxytocin neurons and emission of 50-kHz ultrasonic vocalizations, an index of positive emotion, in rats. The number of oxytocin neurons expressing Fos protein was increased in the hypothalamus, especially in the dorsal zone of the medial parvicellular part of the paraventricular nucleus. The number of 50-kHz ultrasonic vocalizations was also increased. These findings suggest that pleasant sensory stimuli activate hypothalamic oxytocin neurons.


Biological Psychiatry | 2017

Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition

Yuki Takayanagi; Masahide Yoshida; Akihide Takashima; Keiko Takanami; Shoma Yoshida; Katsuhiko Nishimori; Ichiko Nishijima; Hirotaka Sakamoto; Takanori Yamagata; Tatsushi Onaka

BACKGROUND Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. METHODS Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. RESULTS Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. CONCLUSIONS The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits.


Endocrinology | 2014

The Medial Amygdala-Medullary PrRP-Synthesizing Neuron Pathway Mediates Neuroendocrine Responses to Contextual Conditioned Fear in Male Rodents

Masahide Yoshida; Yuki Takayanagi; Tatsushi Onaka

Fear responses play evolutionarily beneficial roles, although excessive fear memory can induce inappropriate fear expression observed in posttraumatic stress disorder, panic disorder, and phobia. To understand the neural machineries that underlie these disorders, it is important to clarify the neural pathways of fear responses. Contextual conditioned fear induces freezing behavior and neuroendocrine responses. Considerable evidence indicates that the central amygdala plays an essential role in expression of freezing behavior after contextual conditioned fear. On the other hand, mechanisms of neuroendocrine responses remain to be clarified. The medial amygdala (MeA), which is activated after contextual conditioned fear, was lesioned bilaterally by infusion of N-methyl-d-aspartate after training of fear conditioning. Plasma oxytocin, ACTH, and prolactin concentrations were significantly increased after contextual conditioned fear in sham-lesioned rats. In MeA-lesioned rats, these neuroendocrine responses but not freezing behavior were significantly impaired compared with those in sham-lesioned rats. In contrast, the magnitudes of neuroendocrine responses after exposure to novel environmental stimuli were not significantly different in MeA-lesioned rats and sham-lesioned rats. Contextual conditioned fear activated prolactin-releasing peptide (PrRP)-synthesizing neurons in the medulla oblongata. In MeA-lesioned rats, the percentage of PrRP-synthesizing neurons activated after contextual conditioned fear was significantly decreased. Furthermore, neuroendocrine responses after contextual conditioned fear disappeared in PrRP-deficient mice. Our findings suggest that the MeA-medullary PrRP-synthesizing neuron pathway plays an important role in neuroendocrine responses to contextual conditioned fear.


Molecular and Cellular Endocrinology | 2008

Infusion of oxytocin induces successful delivery in prostanoid FP-receptor-deficient mice

Masaki Kawamata; Masahide Yoshida; Yukihiko Sugimoto; Tadashi Kimura; Yutaka Tonomura; Yuki Takayanagi; Teruyuki Yanagisawa; Katsuhiko Nishimori

The dramatic increase of oxytocin (OT) receptor (OTR) in the myometrium as well as circulating progesterone withdrawal has been thought to be the most important factor in the induction and accomplishment of parturition since delivery fails in prostaglandin F2alpha receptor (FP) knockout (FP KO) mice. The expression levels of OTR mRNA/protein were not dramatically increased in the near-term uteri of FP KO mice. However, OT-induced myometrial contractions and the concentration-response curves in FP KO in vitro were almost similar to those in wild-type (WT) mice. OT-infusion (0.3 U/day) enabled FP KO mice to experience successful delivery, and furthermore the duration until the onset was hastened by a higher dose of OT (3 U/day). The plasma progesterone levels of FP KO females were maintained at high levels, but decreased during labor by OT-infusion (3 U/day). These results suggest that OT has potentials to induce strong myometrial contractions in uterus with low expression levels of OTR and luteolysis in ovary, which enabled FP KO females to undergo successful delivery.


Endocrinology | 2018

Oxytocin–Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice

Naranbat Nasanbuyan; Masahide Yoshida; Yuki Takayanagi; Ayumu Inutsuka; Katsuhiko Nishimori; Akihiro Yamanaka; Tatsushi Onaka

Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.

Collaboration


Dive into the Masahide Yoshida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsushi Onaka

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Larry J. Young

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shota Okabe

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge