Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Kumada is active.

Publication


Featured researches published by Masahiro Kumada.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

Association of Hypoadiponectinemia With Coronary Artery Disease in Men

Masahiro Kumada; Shinji Kihara; Satoru Sumitsuji; Toshiharu Kawamoto; Satoru Matsumoto; Noriyuki Ouchi; Yukio Arita; Yoshihisa Okamoto; Iichiro Shimomura; Hisatoyo Hiraoka; Tadashi Nakamura; Tohru Funahashi; Yuji Matsuzawa

Background—Adiponectin is an adipocyte-derived plasma protein that accumulates in the injured artery and has potential antiatherogenic properties. This study was designed to determine whether a decreased plasma adiponectin level (hypoadiponectinemia) can be independently associated with the prevalence of coronary artery disease (CAD). Methods and Results—The consecutive 225 male patients were enrolled from inpatients who underwent coronary angiography. Voluntary blood donors (n=225) matched for age served as controls. Plasma adiponectin levels in the CAD patients were significantly lower than those in the control subjects. Multiple logistic regression analysis including plasma adiponectin level, diabetes mellitus, dyslipidemia, hypertension, smoking habits, and body mass index revealed that hypoadiponectinemia was significantly and independently correlated with CAD (P <0.0088). The entire study population was categorized in quartiles based on the distribution of plasma adiponectin levels. The interquartile cutoff points were 4.0, 5.5, and 7.0 &mgr;g/mL. The multivariate-adjusted odds ratios for CAD in the first, second, and third quartiles were 2.051 (95% confidence interval [CI], 1.288 to 4.951), 1.221 (95% CI, 0.684 to2.186), and 0.749 (95%CI, 0.392 to 1.418), respectively. Conclusions—Male patients with hypoadiponectinemia (<4.0 &mgr;g/mL) had a significant 2-fold increase in CAD prevalence, independent of well-known CAD risk factors.


Circulation | 2002

Adiponectin Reduces Atherosclerosis in Apolipoprotein E-Deficient Mice

Yoshihisa Okamoto; Shinji Kihara; Noriyuki Ouchi; Makoto Nishida; Yukio Arita; Masahiro Kumada; Koji Ohashi; Naohiko Sakai; Iichiro Shimomura; Hideki Kobayashi; Naoki Terasaka; Toshimori Inaba; Tohru Funahashi; Yuji Matsuzawa

Background—Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Methods and Results—Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or &bgr;-galactosidase (Ad-&bgr;gal). The plasma adiponectin levels in Ad-APN–treated mice increased 48 times as much as those in Ad-&bgr;gal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN–treated mice by 30% compared with Ad-&bgr;gal–treated mice (P <0.05). In the lesions of Ad-APN–treated mice, the lipid droplets became smaller compared with Ad-&bgr;gal–treated mice (P <0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-&agr; without affecting those of CD36 in the aortic tissue. Conclusions—These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.


Circulation | 2003

Reciprocal Association of C-Reactive Protein With Adiponectin in Blood Stream and Adipose Tissue

Noriyuki Ouchi; Shinji Kihara; Tohru Funahashi; Tadashi Nakamura; Makoto Nishida; Masahiro Kumada; Yoshihisa Okamoto; Koji Ohashi; Hiroyuki Nagaretani; Ken Kishida; Hitoshi Nishizawa; Norikazu Maeda; Hideki Kobayashi; Hisatoyo Hiraoka; Yuji Matsuzawa

Background—High-sensitive C-reactive protein (hs-CRP) is a well-known risk factor for coronary artery disease (CAD). Recently, we have demonstrated that adiponectin served as an antiatherogenic plasma protein which was secreted specifically from adipocytes. The present study investigated the association between adiponectin and CRP in the blood stream and adipose tissue. Methods and Results—We studied a total of 101 male patients, 71 of whom had angiographically documented coronary atherosclerosis. As a control group, 30 patients with normal coronary angiogram were included. The plasma hs-CRP levels were negatively correlated with the plasma adiponectin levels (r =−0.29, P <0.01). The plasma adiponectin concentrations were significantly lower and the hs-CRP levels were significantly higher in the CAD patients compared with control subjects. The mRNA levels of CRP and adiponectin were analyzed by quantitative real-time polymerase chain reaction method. We found that the CRP mRNA was expressed in human adipose tissue. A significant inverse correlation was observed between the CRP and adiponectin mRNA levels in human adipose tissue (r =−0.89, P <0.01). In addition, the CRP mRNA level of white adipose tissue in adiponectin deficient mice was higher than that of wild-type mice. Conclusions—The reciprocal association of adiponectin and CRP levels in both human plasma and adipose tissue might participate in the development of atherosclerosis.


Journal of Biological Chemistry | 2002

Role of adiponectin in preventing vascular stenosis: The missing link of adipo-vascular axis

Morihiro Matsuda; Iichiro Shimomura; Masataka Sata; Yukio Arita; Makoto Nishida; Norikazu Maeda; Masahiro Kumada; Yoshihisa Okamoto; Hiroyuki Nagaretani; Hitoshi Nishizawa; Ken Kishida; Ryutaro Komuro; Noriyuki Ouchi; Shinji Kihara; Ryozo Nagai; Tohru Funahashi; Yuji Matsuzawa

Obesity is more linked to vascular disease, including atherosclerosis and restenotic change, after balloon angioplasty. The precise mechanism linking obesity and vascular disease is still unclear. Previously we have demonstrated that the plasma levels of adiponectin, an adipose-derived hormone, decreases in obese subjects, and that hypoadiponectinemia is associated to ischemic heart disease. In current the study, we investigated the in vivorole of adiponectin on the neointimal thickening after artery injury using adiponectin-deficient mice and adiponectin-producing adenovirus. Adiponectin-deficient mice showed severe neointimal thickening and increased proliferation of vascular smooth muscle cells in mechanically injured arteries. Adenovirus-mediated supplement of adiponectin attenuated neointimal proliferation. In cultured smooth muscle cells, adiponectin attenuated DNA synthesis induced by growth factors including platelet-derived growth factor, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF), basic fibroblast growth factor, and EGF and cell proliferation and migration induced by HB-EGF. In cultured endothelial cells, adiponectin attenuated HB-EGF expression stimulated by tumor necrosis factor α. The current study suggests an adipo-vascular axis, a direct link between fat and artery. A therapeutic strategy to increase plasma adiponectin should be useful in preventing vascular restenosis after angioplasty.


Circulation | 2002

Adipocyte-Derived Plasma Protein Adiponectin Acts as a Platelet-Derived Growth Factor-BB–Binding Protein and Regulates Growth Factor–Induced Common Postreceptor Signal in Vascular Smooth Muscle Cell

Yukio Arita; Shinji Kihara; Noriyuki Ouchi; Kazuhisa Maeda; Hiroshi Kuriyama; Yoshihisa Okamoto; Masahiro Kumada; Kikuko Hotta; Makoto Nishida; Masahiko Takahashi; Tadashi Nakamura; Iichiro Shimomura; Masahiro Muraguchi; Yasukazu Ohmoto; Tohru Funahashi; Yuji Matsuzawa

Background—Vascular smooth muscle cell proliferation plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the human injured artery and suppressed endothelial inflammatory response as well as macrophage-to-foam cell transformation. The present study investigated the effects of adiponectin on proliferation and migration of human aortic smooth muscle cells (HASMCs). Methods and Results—HASMC proliferation was estimated by [3H] thymidine uptake and cell number. Cell migration assay was performed using a Boyden chamber. Physiological concentrations of adiponectin significantly suppressed both proliferation and migration of HASMCs stimulated with platelet-derived growth factor (PDGF)-BB. Adiponectin specifically bound to 125I-PDGF-BB and significantly inhibited the association of 125I-PDGF-BB with HASMCs, but no effects were observed on the binding of 125I-PDGF-AA or 125I-heparin–binding epidermal growth factor (EGF)–like growth factor (HB-EGF) to HASMCs. Adiponectin strongly and dose-dependently suppressed PDGF-BB–induced p42/44 extracellular signal–related kinase (ERK) phosphorylation and PDGF &bgr;-receptor autophosphorylation analyzed by immunoblot. Adiponectin also reduced PDGF-AA–stimulated or HB-EGF–stimulated ERK phosphorylation in a dose-dependent manner without affecting autophosphorylation of PDGF &agr;-receptor or EGF receptor. Conclusions—The adipocyte-derived plasma protein adiponectin strongly suppressed HASMC proliferation and migration through direct binding with PDGF-BB and generally inhibited growth factor–stimulated ERK signal in HASMCs, suggesting that adiponectin acts as a modulator for vascular remodeling.


Circulation Research | 2004

Selective Suppression of Endothelial Cell Apoptosis by the High Molecular Weight Form of Adiponectin

Hideki Kobayashi; Noriyuki Ouchi; Shinji Kihara; Kenneth Walsh; Masahiro Kumada; Yuki Abe; Tohru Funahashi; Yuji Matsuzawa

Abstract— Adiponectin is an adipocyte-derived, antiatherogenic protein that is present in serum as three isoforms. Total adiponectin levels are decreased in obese or diabetic humans or animal models. This study was designed to elucidate the relative isoform distribution of adiponectin in human disease states and identify the active form of adiponectin toward vascular endothelial cells. The percentage of high molecular weight form (HMW) per total adiponectin was significantly lower in patients with coronary artery disease than control subjects, whereas the hexamer form was similar and the trimer form was significantly higher. During weight reduction in obese subjects, the HMW form increased and the trimer and hexamer forms decreased. Recombinant adiponectin dose-dependently suppressed apoptosis and caspase-3 activity in human umbilical vein endothelial cells (HUVECs). Transduction with dominant-negative AMP-activated protein kinase (AMPK) abolished the suppressive effect of adiponectin on HUVECs. Gel filtration chromatography was used to separate the adiponectin isoforms, and the antiapoptotic effect toward HUVECs was only observed with the HMW form. These data suggest that HMW adiponectin specifically confers the vascular-protective activities of this adipocytokine. The full text of this article is available online at http://circres.ahajournals.org.


Nature Medicine | 2004

Adiponectin-mediated modulation of hypertrophic signals in the heart.

Rei Shibata; Noriyuki Ouchi; Masahiro Ito; Shinji Kihara; Ichiro Shiojima; David R. Pimentel; Masahiro Kumada; Kaori Sato; Stephan Schiekofer; Koji Ohashi; Tohru Funahashi; Wilson S. Colucci; Kenneth Walsh

Patients with diabetes and other obesity-linked conditions have increased susceptibility to cardiovascular disorders. The adipocytokine adiponectin is decreased in patients with obesity-linked diseases. Here, we found that pressure overload in adiponectin-deficient mice resulted in enhanced concentric cardiac hypertrophy and increased mortality that was associated with increased extracellular signal-regulated kinase (ERK) and diminished AMP-activated protein kinase (AMPK) signaling in the myocardium. Adenovirus-mediated supplemention of adiponectin attenuated cardiac hypertrophy in response to pressure overload in adiponectin-deficient, wild-type and diabetic db/db mice. In cultures of cardiac myocytes, adiponectin activated AMPK and inhibited agonist-stimulated hypertrophy and ERK activation. Transduction with a dominant-negative form of AMPK reversed these effects, suggesting that adiponectin inhibits hypertrophic signaling in the myocardium through activation of AMPK signaling. Adiponectin may have utility for the treatment of hypertrophic cardiomyopathy associated with diabetes and other obesity-related diseases.


Hypertension | 2003

Association of Hypoadiponectinemia With Impaired Vasoreactivity

Noriyuki Ouchi; Mitsuru Ohishi; Shinji Kihara; Tohru Funahashi; Tadashi Nakamura; Hiroyuki Nagaretani; Masahiro Kumada; Koji Ohashi; Yoshihisa Okamoto; Hitoshi Nishizawa; Ken Kishida; Norikazu Maeda; Azumi Nagasawa; Hideki Kobayashi; Hisatoyo Hiraoka; Norio Komai; Masaharu Kaibe; Hiromi Rakugi; Toshio Ogihara; Yuji Matsuzawa

Abstract—Endothelial dysfunction is a crucial feature in the evolution of atherosclerosis. Adiponectin is an adipocyte-specific plasma protein with antiatherogenic and antidiabetic properties. In the present study, we investigated the relation between adiponectin and endothelium-dependent vasodilation. We analyzed endothelial function in 202 hypertensive patients, including those who were not taking any medication. Forearm blood flow was measured by strain-gauge plethysmography. Plasma adiponectin level was highly correlated with the vasodilator response to reactive hyperemia in the total (r =0.257, P <0.001) and no-medication (r =0.296, P =0.026) groups but not with nitroglycerin-induced hyperemia, indicating that adiponectin affected endothelium-dependent vasodilation. Multiple regression analysis of data from all hypertensive patients revealed that plasma adiponectin level was independently correlated with the vasodilator response to reactive hyperemia. Vascular reactivity was also analyzed in aortic rings from adiponectin-knockout (KO) and wild-type (WT) mice. Adiponectin-KO mice showed obesity, hyperglycemia, and hypertension compared with WT mice after 4 weeks on an atherogenic diet. Endothelium-dependent vasodilation in response to acetylcholine was significantly reduced in adiponectin-KO mice compared with WT mice, although no significant difference was observed in endothelium-independent vasodilation in response to sodium nitroprusside. Our observations suggest that hypoadiponectinemia is associated with impaired endothelium-dependent vasorelaxation and that the measurement of plasma adiponectin level might be helpful as a marker of endothelial dysfunction.


Circulation | 2004

Adiponectin Specifically Increased Tissue Inhibitor of Metalloproteinase-1 Through Interleukin-10 Expression in Human Macrophages

Masahiro Kumada; Shinji Kihara; Noriyuki Ouchi; Hideki Kobayashi; Yoshihisa Okamoto; Koji Ohashi; Kazuhisa Maeda; Hiroyuki Nagaretani; Ken Kishida; Norikazu Maeda; Azumi Nagasawa; Tohru Funahashi; Yuji Matsuzawa

Background—Vascular inflammation and subsequent matrix degradation play an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipose-specific plasma protein, accumulated to the injured artery and attenuated vascular inflammatory response. Clinically, high plasma adiponectin level was associated with low cardiovascular event rate in patients with chronic renal failure. The present study was designed to elucidate the effects of adiponectin on matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in human monocyte-derived macrophages. Methods and Results—Human monocyte-derived macrophages were incubated with the physiological concentrations of human recombinant adiponectin for the time indicated. Adiponectin treatment dose-dependently increased TIMP-1 mRNA levels without affecting MMP-9 mRNA levels. Adiponectin also augmented TIMP-1 secretion into the media, whereas MMP-9 secretion and activity were unchanged. Time course experiments indicated that TIMP-1 mRNA levels started to increase at 24 hours of adiponectin treatment and were significantly elevated at 48 hours. Adiponectin significantly increased interleukin-10 (IL-10) mRNA expression at the transcriptional level within 6 hours and significantly increased IL-10 protein secretion within 24 hours. Cotreatment of adiponectin with anti–IL-10 monoclonal antibody completely abolished adiponectin-induced TIMP-1 mRNA expression. Conclusions—Adiponectin selectively increased TIMP-1 expression in human monocyte-derived macrophages through IL-10 induction. This study identified, for the first time, the adiponectin/IL-10 interaction against vascular inflammation.


Hypertension | 2006

Adiponectin Replenishment Ameliorates Obesity-Related Hypertension

Koji Ohashi; Shinji Kihara; Noriyuki Ouchi; Masahiro Kumada; Koichi Fujita; Aki Hiuge; Toshiyuki Hibuse; Miwa Ryo; Hitoshi Nishizawa; Norikazu Maeda; Kazuhisa Maeda; Rei Shibata; Kenneth Walsh; Tohru Funahashi; Iichiro Shimomura

Patients with obesity are susceptible to hypertension. We have reported that the plasma adiponectin levels are decreased in obesity and that adiponectin has many defensive properties against obesity-related diseases, such as type 2 diabetes and coronary artery disease. The aim of this study was to determine the relationship between adiponectin and hypertension in mice. We measured blood pressure and heart rate directly by a catheter in the carotid artery and indirectly by automatic sphygmomanometer at the tail artery. Obese KKAy mice had significantly lower plasma adiponectin levels and higher systolic blood pressure than control C57BL/6J mice at 21 weeks of age. Adenovirus-delivered adiponectin significantly decreased blood pressure in KKAy mice. The direct role of adiponectin on blood pressure regulation under insulin resistance–free state was investigated in adiponectin-knockout (KO) mice. Adiponectin KO mice developed hypertension when maintained on a high-salt diet (8% NaCl) without insulin resistance. The hypertension of salt-fed adiponectin KO mice was associated with reduced mRNA levels of endothelial NO synthase (eNOS) and prostaglandin I2 synthase in aorta and low metabolite levels of endothelial NO synthase and prostaglandin I2 synthase in plasma. Adiponectin therapy lowered the elevated blood pressure and corrected the above mRNA levels to those of the wild type. Our results suggest that hypoadiponectinemia contributes to the development of obesity-related hypertension, at least in part, directly, in addition to its effect via insulin resistance, and that adiponectin therapy can be potentially useful for hypertension in patients with the metabolic syndrome.

Collaboration


Dive into the Masahiro Kumada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuo Mizutani

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge