Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Tsujimoto is active.

Publication


Featured researches published by Masahiro Tsujimoto.


Proceedings of SPIE | 2016

The Astro-H High Resolution Soft X-Ray Spectrometer

Richard L. Kelley; Hiroki Akamatsu; Phillipp Azzarell; Tom Bialas; Gregory V. Brown; Edgar Canavan; Meng P. Chiao; E. Costantini; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Jan Willem den Herder; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; Shu Koyama; Maurice A. Leutenegger; Dan McCammon; Joseph Miko; Kazuhisa Mitsuda; Ikuyuki Mitsuishi; Harvey Moseley; Hiroshi Murakami

We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.


Proceedings of SPIE | 2014

Soft x-ray spectrometer (SXS): The high-resolution cryogenic spectrometer onboard ASTRO-H

Kazuhisa Mitsuda; Richard L. Kelley; Hiroki Akamatsu; Thomas G. Bialas; Gregory V. Brown; Edgar Canavan; Meng Chiao; E. Costantini; Jan Willem den Herder; Cor P. de Vries; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; M. A. Leutenegger; Dan McCammon; Joseph Miko; Ikuyuki Mitsuishi; Hiroshi Murakami; Masahide Murakami; Hirofumi Noda

We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 – 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.


Publications of the Astronomical Society of Japan | 2012

Data-Oriented Diagnostics of Pileup Effects on the Suzaku XIS

S. Yamada; Hideki Uchiyama; Tadayasu Dotani; Masahiro Tsujimoto; Satoru Katsuda; Kazuo Makishima; H. Takahashi; Hirofumi Noda; S. Torii; Soki Sakurai; Teruaki Enoto; Takayuki Yuasa; S. Koyama; Aya Bamba

We present the results of a systematic study of pileup phenomena seen in the X-ray Imaging Spectrometer, an X-ray CCD instrument, onboard the Suzaku observatory. Using a data set of observed sources in a wide range of brightness and spectral hardness, we characterized the pileup fraction, spectral hardening, and grade migration as a function of the observed count rate in a frame per pixel. Using the pileup fraction as a measure of the degree of pileup, we found that the relative spectral hardening (the hardness ratio normalized to the intrinsic spectral hardness), branching ratio of split events, and that of detached events increase monotonically as the pileup fraction increases, despite the variety of brightness and hardness of the sample sources. We derived the pileup fraction as a function of radius used for event extraction. Upon practical considerations, we found that events outside of the radius with a pileup fraction of 1% or 3% are useful for spectral analysis. We present relevant figures, tables, and software for the convenience of users who wish to apply our method for their data reduction of piled-up sources.


Proceedings of SPIE | 2016

Performance of the helium dewar and cryocoolers of ASTRO-H SXS

Ryuichi Fujimoto; Yoh Takei; Kazuhisa Mitsuda; Noriko Y. Yamasaki; Masahiro Tsujimoto; Shu Koyama; Kumi Ishikawa; Hiroyuki Sugita; Yoichi Sato; Keisuke Shinozaki; Atsushi Okamoto; Shunji Kitamoto; Akio Hoshino; Kosuke Sato; Yuichiro Ezoe; Yoshitaka Ishisaki; S. Yamada; Hiromi Seta; Takaya Ohashi; Toru Tamagawa; Hirofumi Noda; Makoto Sawada; Makoto Tashiro; Yoichi Yatsu; Ikuyuki Mitsuishi; Kenichi Kanao; Seiji Yoshida; Mikio Miyaoka; Shoji Tsunematsu; Kiyomi Otsuka

The Soft X-ray Spectrometer (SXS) is a cryogenic high-resolution X-ray spectrometer onboard the ASTRO-H satellite, that achieves energy resolution better than 7 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator. The cooling chain from room temperature to the ADR heat sink is composed of 2-stage Stirling cryocoolers, a 4He Joule-Thomson cryocooler, and super uid liquid He, and is installed in a dewar. It is designed to achieve a helium lifetime of more than 3 years with a minimum of 30 liters. The satellite was launched on 2016 February 17, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the He tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and cryocoolers.


Proceedings of SPIE | 2016

In-flight performance of the Soft X-ray Spectrometer detector system on Astro-H

F. S. Porter; Meng P. Chiao; Megan E. Eckart; Ryuichi Fujimoto; Yoshitaka Ishisaki; Richard L. Kelley; Caroline A. Kilbourne; Maurice A. Leutenegger; Dan McCammon; Kazuhisa Mitsuda; Kosuke Sato; Hiromi Seta; Makoto Sawada; Gary A. Sneiderman; Andrew E. Szymkowiak; Yoh Takei; Makoto Tashiro; Masahiro Tsujimoto; Tomomi Watanabe; S. Yamada

The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.


Proceedings of SPIE | 2010

Cooling system for the soft x-ray spectrometer (SXS) onboard ASTRO-H

Ryuichi Fujimoto; Kazuhisa Mitsuda; Noriko Y. Yamasaki; Yoh Takei; Masahiro Tsujimoto; Hiroyuki Sugita; Yoichi Sato; Keisuke Shinozaki; Atsushi Okamoto; Takaya Ohashi; Yoshitaka Ishisaki; Yuichiro Ezoe; Kumi Ishikawa; Masahide Murakami; Shunji Kitamoto; Hiroshi Murakami; Toru Tamagawa; Madoka Kawaharada; Hiroya Yamaguchi; Kosuke Sato; Akio Hoshino; Kenichi Kanao; Seiji Yoshida; Mikio Miyaoka; Michael DiPirro; Peter J. Shirron; Gary A. Sneiderman; Richard L. Kelley; F. Scott Porter; Caroline A. Kilbourne

The Soft X-ray Spectrometer (SXS) is a cryogenic high resolution X-ray spectrometer onboard the X-ray astronomy satellite ASTRO-H. The detector array is cooled down to 50 mK using a 3-stage adiabatic demagnetization refrigerator (ADR). The cooling chain from room temperature to the ADR heat-sink is composed of superfluid liquid He, a 4He Joule-Thomson cryocooler, and 2-stage Stirling cryocoolers. It is designed to keep 30 L of liquid He for more than 3 years in the nominal case. It is also designed with redundant subsystems throughout from room temperature to the ADR heat-sink, to alleviate failure of a single cryocooler or loss of liquid He.


IEEE Transactions on Nuclear Science | 2012

The Digital Processing System for the Soft X-Ray Spectrometer Onboard ASTRO-H —The Design and the Performance—

Hiromi Seta; Makoto Tashiro; Yoshitaka Ishisaki; Masahiro Tsujimoto; Yuya Shimoda; Y. Abe; Tetsuya Yasuda; Sawako Takeda; M. Asahina; Y. Hiyama; Sunao Yamaguchi; Y. Terada; F. S. Porter; Caroline A. Kilbourne; R. L. Kelley; Ryuichi Fujimoto; Yoh Takei; K. Mitsuda; K. Matsuda; K. Masukawa

We report the design and the performance of the engineering model of the digital signal processing system called the Pulse Shape Processor (PSP) for the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H satellite. The SXS employs an X-ray microcalorimeter system, in which X-ray photons are detected as a heat pulse due to photoelectric absorption. The pixelized HgTe absorbers are cooled down to 50 mK. The required energy resolution is 7 eV (FWHM) at 6 keV. Since the data link to the satellite data recorder is limited to 200 kbit s-1, the onboard digital processor PSP plays a critical role in achieving the required resolution. The PSP is also the rate-limiting factor for other performance of the SXS, such as maximum count rate and energy range. In this paper, we show the design of the PSP, and show the performance based on a series of laboratory tests performed with the engineering models of the detector and the analog readout electronics. We found that (1) the PSP can register energy in the 0.07-18 keV band [energy range], (2) the energy resolution of the engineering model system, including the detector, analog electronics, and the PSP, is 4.8-5.7 eV at 5.9 keV [energy resolution], and (3) the PSP has sufficient processing power to handle a point-like source fainter than 0.3 Crab [maximum count rate]. These results are expected to be quite similar to those with the flight model, thus the results will be useful for the observation planning using the SXS.


Proceedings of SPIE | 2016

Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

Megan E. Eckart; Joseph S. Adams; G. V. Brown; Meng P. Chiao; Ryuichi Fujimoto; D. Haas; J. W. den Herder; Yoshitaka Ishisaki; R. L. Kelley; Caroline A. Kilbourne; Maurice A. Leutenegger; D. McCammon; K. Mitsuda; F. S. Porter; Kosuke Sato; Makoto Sawada; Hiromi Seta; Gary A. Sneiderman; Andrew E. Szymkowiak; Yoh Takei; Makoto Tashiro; Masahiro Tsujimoto; C. P. de Vries; Tomomi Watanabe; S. Yamada; Noriko Y. Yamasaki

The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0:3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.


The Astrophysical Journal | 2013

X-Ray Point-source Populations Constituting the Galactic Ridge X-Ray Emission

Kumiko Morihana; Masahiro Tsujimoto; T. Yoshida; Ken Ebisawa

Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above ≈10–14 erg cm–2 s–1, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe Kα emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.


Proceedings of SPIE | 2010

The x-ray microcalorimeter spectrometer onboard of IXO

J. W. den Herder; R. L. Kelley; K. Mitsuda; Luigi Piro; Simon R. Bandler; P. Bastia; M. Bruin; J. A. Chervenak; L. Colasanti; W. B. Doriese; M. J. DiPirro; Megan E. Eckart; Yuichiro Ezoe; E. Figueroa-Feliciano; L. Ferrari; Ryuichi Fujimoto; F. Gatti; Keith C. Gendreau; L. Gottardi; R. den Hartog; G. C. Hilton; H. Hoevers; K. D. Irwin; Yoshitaka Ishisaki; Ali Kashani; Caroline A. Kilbourne; P.A.J. de Korte; J. van der Kuur; C. Macculi; T. Mineo

One of the instruments on the International X-ray Observatory (IXO), under study with NASA, ESA and JAXA, is the X-ray Microcalorimeter Spectrometer (XMS). This instrument, which will provide high spectral resolution images, is based on X-ray micro-calorimeters with Transition Edge Sensor thermometers. The pixels have metallic X-ray absorbers and are read-out by multiplexed SQUID electronics. The requirements for this instrument are demanding. In the central array (40 x 40 pixels) an energy resolution of < 2.5 eV is required, whereas the energy resolution of the outer array is more relaxed (≈ 10 eV) but the detection elements have to be a factor 16 larger in order to keep the number of read-out channels acceptable for a cryogenic instrument. Due to the large collection area of the IXO optics, the XMS instrument must be capable of processing high counting rates, while maintaining the spectral resolution and a low deadtime. In addition, an anti-coincidence detector is required to suppress the particle-induced background. In this paper we will summarize the instrument status and performance. We will describe the results of design studies for the focal plane assembly and the cooling systems. Also the system and its required spacecraft resources will be given.

Collaboration


Dive into the Masahiro Tsujimoto's collaboration.

Top Co-Authors

Avatar

Yoshitaka Ishisaki

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhisa Mitsuda

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Yoh Takei

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Megan E. Eckart

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Richard L. Kelley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromi Seta

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge