Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahito Kawamura is active.

Publication


Featured researches published by Masahito Kawamura.


The Journal of Neuroscience | 2010

Metabolic Autocrine Regulation of Neurons Involves Cooperation Among Pannexin Hemichannels, Adenosine Receptors and KATP Channels

Masahito Kawamura; David N. Ruskin; Susan A. Masino

Metabolic perturbations that decrease or limit blood glucose—such as fasting or adhering to a ketogenic diet—reduce epileptic seizures significantly. To date, the critical links between altered metabolism and decreased neuronal activity remain unknown. More generally, metabolic changes accompany numerous CNS disorders, and the purines ATP and its core molecule adenosine are poised to translate cell energy into altered neuronal activity. Here we show that nonpathological changes in metabolism induce a purinergic autoregulation of hippocampal CA3 pyramidal neuron excitability. During conditions of sufficient intracellular ATP, reducing extracellular glucose induces pannexin-1 hemichannel-mediated ATP release directly from CA3 neurons. This extracellular ATP is dephosphorylated to adenosine, activates neuronal adenosine A1 receptors, and, unexpectedly, hyperpolarizes neuronal membrane potential via ATP-sensitive K+ channels. Together, these data delineate an autocrine regulation of neuronal excitability via ATP and adenosine in a seizure-prone subregion of the hippocampus and offer new mechanistic insight into the relationship between decreased glucose and increased seizure threshold. By establishing neuronal ATP release via pannexin hemichannels, and hippocampal adenosine A1 receptors coupled to ATP-sensitive K+ channels, we reveal detailed information regarding the relationship between metabolism and neuronal activity and new strategies for adenosine-based therapies in the CNS.


The Journal of Neuroscience | 2004

Direct Excitation of Inhibitory Interneurons by Extracellular ATP Mediated by P2Y1 Receptors in the Hippocampal Slice

Masahito Kawamura; Christian Gachet; Kazuhide Inoue; Fusao Kato

ATP is an important cell-to-cell signaling molecule mediating the interactions between astrocytes and neurons in the CNS. In the hippocampal slices, ATP suppresses excitatory transmission mostly through activation of adenosine A1 receptors, because the ectoenzyme activity for the extracellular breakdown of ATP to adenosine is high in slice preparations in contrast to culture environments. Because the hippocampus is also rich in the expression of P2 receptors activated specifically by ATP, we examined whether ATP modulates neuronal excitability in the acute slice preparations independently of adenosine receptors. Although ATP decreased the frequency of spontaneously occurring EPSCs in the CA3 pyramidal neurons through activation of adenosine A1 receptors, ATP concurrently increased the frequency of IPSCs in a manner dependent on action potential generation. This effect was mediated by P2Y1 receptors because (1) 2-methylthio-ATP (2meSATP) was the most potent agonist, (2) 2′-deoxy-N6-methyladenosine-3′,5′-bisphosphate diammonium (MRS2179) abolished this effect, and (3) this increase in IPSC frequency was not observed in the transgenic mice lacking P2Y1 receptor proteins. Application of 2meSATP elicited MRS2179-sensitive time- and voltage-dependent inward currents in the interneurons, which depolarized the cell to firing threshold. Also, it increased [Ca2+]i in both astrocytes and interneurons, but, unlike the former effect, the latter was entirely dependent on Ca2+ entry. Thus, in hippocampal slices, in addition to activating A1 receptors of the excitatory terminals after being converted to adenosine, ATP activates P2Y1 receptors in the interneurons, which is linked to activation of unidentified excitatory conductance, through mechanisms distinct from those in the astrocytes.


The Journal of Neuroscience | 2010

Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors

Alexander F. Hoffman; Nora Laaris; Masahito Kawamura; Susan A. Masino; Carl R. Lupica

Marijuana is a widely used drug that impairs memory through interaction between its psychoactive constituent, Δ-9-tetrahydrocannabinol (Δ9-THC), and CB1 receptors (CB1Rs) in the hippocampus. CB1Rs are located on Schaffer collateral (Sc) axon terminals in the hippocampus, where they inhibit glutamate release onto CA1 pyramidal neurons. This action is shared by adenosine A1 receptors (A1Rs), which are also located on Sc terminals. Furthermore, A1Rs are tonically activated by endogenous adenosine (eADO), leading to suppressed glutamate release under basal conditions. Colocalization of A1Rs and CB1Rs, and their coupling to shared components of signal transduction, suggest that these receptors may interact. We examined the roles of A1Rs and eADO in regulating CB1R inhibition of glutamatergic synaptic transmission in the rodent hippocampus. We found that A1R activation by basal or experimentally increased levels of eADO reduced or eliminated CB1R inhibition of glutamate release, and that blockade of A1Rs with caffeine or other antagonists reversed this effect. The CB1R–A1R interaction was observed with the agonists WIN55,212-2 and Δ9-THC and during endocannabinoid-mediated depolarization-induced suppression of excitation. A1R control of CB1Rs was stronger in the C57BL/6J mouse hippocampus, in which eADO levels were higher than in Sprague Dawley rats, and the eADO modulation of CB1R effects was absent in A1R knock-out mice. Since eADO levels and A1R activation are regulated by homeostatic, metabolic, and pathological factors, these data identify a mechanism in which CB1R function can be controlled by the brain adenosine system. Additionally, our data imply that caffeine may potentiate the effects of marijuana on hippocampal function.


PLOS ONE | 2013

Ketogenic Diet Improves Core Symptoms of Autism in BTBR Mice

David N. Ruskin; Julia Svedova; Jessica L. Cote; Ursula S. Sandau; Jong M. Rho; Masahito Kawamura; Detlev Boison; Susan A. Masino

Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920’s a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.


Epilepsy Research | 2012

Purines and neuronal excitability: Links to the ketogenic diet

Susan A. Masino; Masahito Kawamura; David N. Ruskin; Jonathan D. Geiger; Detlev Boison

ATP and adenosine are purines that play dual roles in cell metabolism and neuronal signaling. Acting at the A(1) receptor (A(1)R) subtype, adenosine acts directly on neurons to inhibit excitability and is a powerful endogenous neuroprotective and anticonvulsant molecule. Previous research showed an increase in ATP and other cell energy parameters when an animal is administered a ketogenic diet, an established metabolic therapy to reduce epileptic seizures, but the relationship among purines, neuronal excitability and the ketogenic diet was unclear. Recent work in vivo and in vitro tested the specific hypothesis that adenosine acting at A(1)Rs is a key mechanism underlying the success of ketogenic diet therapy and yielded direct evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Specifically, an in vitro mimic of a ketogenic diet revealed an A(1)R-dependent metabolic autocrine hyperpolarization of hippocampal neurons. In parallel, applying the ketogenic diet in vivo to transgenic mouse models with spontaneous electrographic seizures revealed that intact A(1)Rs are necessary for the seizure-suppressing effects of the diet. This is the first direct in vivo evidence linking A(1)Rs to the antiepileptic effects of a ketogenic diet. Other predictions of the relationship between purines and the ketogenic diet are discussed. Taken together, recent research on the role of purines may offer new opportunities for metabolic therapy and insight into its underlying mechanisms.


Journal of Lipid Research | 2014

Ketogenic diet sensitizes glucose control of hippocampal excitability.

Masahito Kawamura; David N. Ruskin; Jonathan D. Geiger; Detlev Boison; Susan A. Masino

A high-fat low-carbohydrate ketogenic diet (KD) is an effective treatment for refractory epilepsy, yet myriad metabolic effects in vivo have not been reconciled clearly with neuronal effects. A KD limits blood glucose and produces ketone bodies from β-oxidation of lipids. Studies have explored changes in ketone bodies and/or glucose in the effects of the KD, and glucose is increasingly implicated in neurological conditions. To examine the interaction between altered glucose and the neural effects of a KD, we fed rats and mice a KD and restricted glucose in vitro while examining the seizure-prone CA3 region of acute hippocampal slices. Slices from KD-fed animals were sensitive to small physiological changes in glucose, and showed reduced excitability and seizure propensity. Similar to clinical observations, reduced excitability depended on maintaining reduced glucose. Enhanced glucose sensitivity and reduced excitability were absent in slices obtained from KD-fed mice lacking adenosine A1 receptors (A1Rs); in slices from normal animals effects of the KD could be reversed with blockers of pannexin-1 channels, A1Rs, or KATP channels. Overall, these studies reveal that a KD sensitizes glucose-based regulation of excitability via purinergic mechanisms in the hippocampus and thus link key metabolic and direct neural effects of the KD.


Frontiers in Cellular Neuroscience | 2013

Homeostatic control of brain function – new approaches to understand epileptogenesis

Detlev Boison; Ursula S. Sandau; David N. Ruskin; Masahito Kawamura; Susan A. Masino

Neuronal excitability of the brain and ongoing homeostasis depend not only on intrinsic neuronal properties, but also on external environmental factors; together these determine the functionality of neuronal networks. Homeostatic factors become critically important during epileptogenesis, a process that involves complex disruption of self-regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator adenosine, a purine nucleoside whose availability is largely regulated by astrocytes. Endogenous adenosine modulates complex network function through multiple mechanisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics, and adenosine receptor-independent changes to the epigenome. Accumulating evidence from our laboratories shows that disruption of adenosine homeostasis plays a major role in epileptogenesis. Conversely, we have found that reconstruction of adenosines homeostatic functions provides new hope for the prevention of epileptogenesis. We will discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis on an epigenetic level, and how dietary interventions can be used to restore network homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the brain offers a new conceptual advance for the treatment of neurological conditions which goes far beyond current target-centric treatment approaches.


Anesthesia & Analgesia | 2004

Attenuation of gap-junction-mediated signaling facilitated anesthetic effect of sevoflurane in the central nervous system of rats.

Eiji Masaki; Masahito Kawamura; Fusao Kato

Accumulating evidence suggests that reduction of intrinsic excitability or synaptic excitation and/or an enhancement of synaptic inhibition underlie the general anesthetic condition. Besides chemical synapse, neurons could communicate with each other by electrical coupling via gap-junctions. We hypothesized that inhibition of cell-to-cell signaling through gap-junction in the central nervous system (CNS) is involved in the anesthetic mechanism of volatile anesthetics. The minimum alveolar concentration (MAC) of sevoflurane was measured after the intracerebroventricular (ICV) or intrathecal (IT) administration of carbenoxolone (CBX), a gap-junction inhibitor, in vivo. The spontaneous oscillation in membrane currents of locus coeruleus neurons that results from electrical coupling between neurons was also recorded from young rat pontine slices by the patch clamp method, and the effect of sevoflurane on this oscillation was examined in vitro. The ICV administration of CBX (125 and 250 &mgr;g/rat) significantly reduced the MAC of sevoflurane dose-dependently, whereas IT injection failed to inhibit the MAC. Sevoflurane at clinically relevant concentrations (0.1–0.5 mM) suppressed the spontaneous oscillation in membrane current concentration-dependently. These suppressions were significant at 0.5 mM with both amplitude and frequency. We suggest that suppression of gap-junction-mediated signaling in the CNS is involved in the anesthetic-induced immobilization by sevoflurane.


Cell Calcium | 2011

Long-term facilitation of spontaneous calcium oscillations in astrocytes with endogenous adenosine in hippocampal slice cultures.

Masahito Kawamura; Masahiro Kawamura

It is well established that astrocytes release gliotransmitters and moderate neuronal activity in the central nervous system via intracellular Ca(2+) dynamics. Astrocytic Ca(2+) oscillations are one type of spontaneous Ca(2+) mobilization that occurs in astrocytes. However, the modulation of spontaneous astrocytic Ca(2+) oscillations, especially in pathophysiological conditions, is not yet fully understood. Here, we demonstrate that activation of adenosine receptors induces a long-lasting increase in the frequency of astrocytic Ca(2+) oscillations in rat hippocampal slice cultures. The long-term facilitation of the frequency of Ca(2+) oscillations was mediated by endogenous adenosine generated via breakdown of extracellular ATP by ecto-ATPase. We also demonstrate that local tissue injury with ultraviolet irradiation can cause this long-term facilitation of Ca(2+) oscillations via endogenous adenosine. Our data suggest that endogenous adenosine is one of the modulators of spontaneous astrocytic Ca(2+) oscillations in the rat hippocampus, and may play a significant role in altered Ca(2+) dynamics in astrocytes observed during pathophysiological conditions.


International Review of Neurobiology | 2014

Adenosine Receptors and Epilepsy: Current Evidence and Future Potential

Susan A. Masino; Masahito Kawamura; David N. Ruskin

Adenosine receptors are a powerful therapeutic target for regulating epileptic seizures. As a homeostatic bioenergetic network regulator, adenosine is perfectly suited to establish or restore an ongoing balance between excitation and inhibition, and its anticonvulsant efficacy is well established. There is evidence for the involvement of multiple adenosine receptor subtypes in epilepsy, but in particular the adenosine A1 receptor subtype can powerfully and bidirectionally regulate seizure activity. Mechanisms that regulate adenosine itself are increasingly appreciated as targets to thus influence receptor activity and seizure propensity. Taken together, established evidence for the powerful potential of adenosine-based epilepsy therapies and new strategies to influence receptor activity can combine to capitalize on this endogenous homeostatic neuromodulator.

Collaboration


Dive into the Masahito Kawamura's collaboration.

Top Co-Authors

Avatar

Fusao Kato

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Masaki

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Shigetomi

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander F. Hoffman

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nora Laaris

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Ursula S. Sandau

Oregon National Primate Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge