Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahito Ueyama is active.

Publication


Featured researches published by Masahito Ueyama.


Tellus B | 2007

Assessment of winter fluxes of CO2 and CH4 in boreal forest soils of central Alaska estimated by the profile method and the chamber method: a diagnosis of methane emission and implications for the regional carbon budget

Yongwon Kim; Masahito Ueyama; Fumiko Nakagawa; Urumu Tsunogai; Yoshinobu Harazono; Noriyuki Tanaka

This research was carried out to estimate the winter fluxes of CO2 and CH4 using the concentration profile method and the chamber method in black spruce forest soils in central Alaska during the winter of 2004/5. The average winter fluxes of CO2 and CH4 by chamber and profile methods were 0.24 ± 0.06 (SE; standard error) and 0.21 ± 0.06 gCO2-C/m2/d, and 21.4 ± 5.6 and 21.4 ± 14 μgCH4-C/m2/hr. This suggests that the fluxes estimated by the two methods are not significantly different based on a one-way ANOVA with a 95% confidence level. The hypothesis on the processes of CH4 transport/production/emission in underlying snow-covered boreal forest soils is proven by the pressure differences between air and in soil at 30 cm depth. The winter CO2 emission corresponds to 23% of the annual CO2 emitted from Alaska black spruce forest soils, which resulted in the sum of mainly root respiration and microbial respiration during the winter based on the δ13CO2 of .22.5‰. The average wintertime emissions of CO2 and CH4 were 49 ± 13 gCO2-C/m2/season and 0.11 ± 0.07 gCH4-C/m2/season, respectively. This implies that winter emissions of CO2 and CH4 are an important part of the annual carbon budget in seasonally snow-covered terrain of typical boreal forest soils.


Tellus B | 2012

Influences of various calculation options on heat, water and carbon fluxes determined by open- and closed-path eddy covariance methods

Masahito Ueyama; Ryuichi Hirata; Masayoshi Mano; Yoshinobu Harazono; Takashi Hirano; Akira Miyata; Kentaro Takagi; Yoshiyuki Takahashi

ABSTRACT Synthesis studies using multiple-site datasets for eddy covariance potentially contain uncertainties originating from the use of different flux calculation options, because the choice of the process for calculating half-hourly fluxes from raw time series data is left to individual researchers. In this study, we quantified the uncertainties associated with different flux calculation methods at seven sites. The differences in the half-hourly fluxes were small, generally of the order less than a few percentiles, but they were substantial for the annual fluxes. After the standardisation under current recommendations in the FLUXNET communities, we estimated the uncertainties in the annual fluxes associated with the flux calculations to be 2.6±2.7 W m−2 (the mean 90% ± confidence interval) for the sensible heat flux, 72±37 g C m−2 yr−1 for net ecosystem exchange (NEE), 12±6% for evapotranspiration, 12±6% for gross primary productivity and 16±10% for ecosystem respiration. The self-heating correction strongly influenced the annual carbon balance (143±93 g C m−2 yr−1), not only for cold sites but also for warm sites, but did not fully account for differences between the open- and closed-path systems (413±189 g C m−2 yr−1).


Ecological Applications | 2013

Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA).

Masahito Ueyama; Hiroki Iwata; Yoshinobu Harazono; Eugénie S. Euskirchen; Walter C. Oechel; Donatella Zona

To better understand the spatial and temporal dynamics of CO2 exchange between Arctic ecosystems and the atmosphere, we synthesized CO2 flux data, measured in eight Arctic tundra and five boreal ecosystems across Alaska (USA) and identified growing season and spatial variations of the fluxes and environmental controlling factors. For the period examined, all of the boreal and seven of the eight Arctic tundra ecosystems acted as CO2 sinks during the growing season. Seasonal patterns of the CO2 fluxes were mostly determined by air temperature, except ecosystem respiration (RE) of tundra. For the tundra ecosystems, the spatial variation of gross primary productivity (GPP) and net CO2 sink strength were explained by growing season length, whereas RE increased with growing degree days. For boreal ecosystems, the spatial variation of net CO2 sink strength was mostly determined by recovery of GPP from fire disturbance. Satellite-derived leaf area index (LAI) was a better index to explain the spatial variations of GPP and NEE of the ecosystems in Alaska than were the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Multiple regression models using growing degree days, growing season length, and satellite-derived LAI explained much of the spatial variation in GPP and net CO2 exchange among the tundra and boreal ecosystems. The high sensitivity of the sink strength to growing season length indicated that the tundra ecosystem could increase CO2 sink strength under expected future warming, whereas ecosystem compositions associated with fire disturbance could play a major role in carbon release from boreal ecosystems.


Global Change Biology | 2014

Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement.

Masahito Ueyama; Hiroki Iwata; Yoshinobu Harazono

Nine years (2003-2011) of carbon dioxide (CO2) flux were measured at a black spruce forest in interior Alaska using the eddy covariance method. Seasonal and interannual variations in the gross primary productivity (GPP) and ecosystem respiration (RE) were associated primarily with air temperature: warmer conditions enhanced GPP and RE. Meanwhile, interannual variation in annual CO2 balance was controlled predominantly by RE, and not GPP. During these 9 years of measurement, the annual CO2 balance shifted from a CO2 sink to a CO2 source, with a 9-year average near zero. The increase in autumn RE was associated with autumn warming and was mostly attributed to a shift in the annual CO2 balance. The increase in autumn air temperature (0.22 °C yr(-1)) during the 9 years of study was 15 times greater than the long-term warming trend between 1905 and 2011 (0.015 °C yr(-1)) due to decadal climate oscillation. This result indicates that most of the shifts in observed CO2 fluxes were associated with decadal climate variability. Because the natural climate varies in a cycle of 10-30 years, a long-term study covering at least one full cycle of decadal climate oscillation is important to quantify the CO2 balance and its interaction with the climate.


Tellus B | 2006

Controlling factors on the interannual CO2 budget at a subarctic black spruce forest in interior Alaska

Masahito Ueyama; Yoshinobu Harazono; Eiji Ohtaki; Akira Miyata

The eddy covariance method was applied to measure net ecosystem CO2 exchange (NEE) at a subarctic black spruce forest in interior Alaska during 2003 and 2004. To clarify the budget of CO2, we divided photosynthesis and respiration by applying the Carbon Budget Analysis Tool, in which the potential photosynthetic rate, the light use efficiency, and the suppression factors on photosynthesis were evaluated. The potential photosynthetic rate and the light use efficiency were related with the understory leaf area index. The determined optimal temperature of photosynthesis was higher than 15 ◦C, which was higher than that of other boreal forests. Drought in midsummer of 2004 suppressed both photosynthesis and respiration, but the suppression was more effective in photosynthesis, resulting in a slightly decreased NEE. Cumulative respiration and photosynthesis were 2.29 and -2.50 kg CO2 m-2 in 2003, and 2.37 and -2.44 kg CO2 m-2 in 2004, resulting in calculated annual CO2 sink budgets of -210 and -70 g CO2 m-2 in 2003 and 2004, respectively.


Remote Sensing | 2013

Recent Changes in Terrestrial Gross Primary Productivity in Asia from 1982 to 2011

Kazuhito Ichii; Masayuki Kondo; Yuki Okabe; Masahito Ueyama; Hideki Kobayashi; Seung-Jae Lee; Nobuko Saigusa; Zaichun Zhu; Ranga B. Myneni

Past changes in gross primary productivity (GPP) were assessed using historical satellite observations based on the Normalized Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) satellite series and four terrestrial biosphere models to identify the trends and driving mechanisms related to GPP and NDVI in Asia. A satellite-based time-series data analysis showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI are dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation and CO2 fertilization are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models.


Journal of Forest Research | 2013

Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing

Nobuko Saigusa; Shenggong Li; Hyojung Kwon; Kentaro Takagi; Leiming Zhang; Reiko Ide; Masahito Ueyama; Jun Asanuma; Young-Jean Choi; Jung Hwa Chun; Shijie Han; Takashi Hirano; Ryuichi Hirata; Minseok Kang; Tomomichi Kato; Joon Kim; Yingnian Li; Takahisa Maeda; Akira Miyata; Yasuko Mizoguchi; Shohei Murayama; Yuichiro Nakai; Takeshi Ohta; Taku M. Saitoh; Huiming Wang; Guirui Yu; Yiping Zhang; Fenghua Zhao

The datasets of net ecosystem CO2 exchange (NEE) were acquired from 21 forests, 3 grasslands, and 3 croplands in the eastern part of Asia based on the eddy covariance measurements of the international joint program, CarboEastAsia. The program was conducted by three networks in Asia, ChinaFLUX, JapanFlux, and KoFlux, to quantify, synthesize, and understand the carbon budget of the eastern part of Asia. An intercomparison was conducted for NEE estimated by three gap-filling procedures adopted by ChinaFLUX, JapanFlux, and KoFlux to test the range of uncertainty in the estimation of NEE. The overall comparison indicated good agreement among the procedures in the seasonal patterns of NEE, although a bias was observed in dormant seasons depending on the different criteria of data screening. Based on the gap-filled datasets, the magnitude and seasonality of the carbon budget were compared among various biome types, phenology, and stress conditions throughout Asia. The annual values of gross primary production and ecosystem respiration were almost proportional to the annual air temperature. Forest management, including clear-cutting, plantation, and artificial drainage, was significant and obviously affected the annual carbon uptake within the forests. Agricultural management resulted in notable seasonal patterns in the crop sites. The dataset obtained from a variety of biome types would be an essential source of knowledge for ecosystem science as well as a valuable validation dataset for modeling and remote sensing to upscale the carbon budget estimations in Asia.


Ecological Research | 2013

Determination of the gas exchange phenology in an evergreen coniferous forest from 7 years of eddy covariance flux data using an extended big-leaf analysis

Yoshiko Kosugi; Satoru Takanashi; Masahito Ueyama; Shinjiro Ohkubo; Hiroki Tanaka; Kazuho Matsumoto; Natsuko Yoshifuji; Mioko Ataka; Ayaka Sakabe

We defined gas exchange phenology as the seasonality of the gas exchange characteristics of a forest canopy, and investigated how the gas exchange phenology could be directly detected from an eddy covariance (EC) dataset and its influence on the canopy fluxes within an evergreen Japanese cypress forest. For the detection of gas exchange phenology, we derived three bulk parameters of the extended big-leaf model (Kosugi et al. 2005) inversely from EC flux data over a 7-year period: surface conductance (gc), maximum rate of carboxylation of the “big leaf” (VCMAX), and intercellular CO2 concentration of the “big leaf” (CI). The relationship between gc and the vapor pressure deficit declined in winter and spring. The relationship between the daily ecosystem respiration and air temperature was greater in the spring than in the other seasons. The temperature dependence curve of VCMAX decreased substantially in the winter and was different from that of an evergreen broadleaved forest. A decrease in CI was occasionally coupled with the decrease in canopy gross primary production during April and August, indicating that stomatal closure was responsible for a decline in canopy photosynthesis. Gas exchange phenology should be quantified when understanding the determining factors of the seasonality of canopy fluxes at evergreen coniferous forests.


Journal of Geophysical Research | 2017

New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression

Kazuhito Ichii; Masahito Ueyama; Masayuki Kondo; Nobuko Saigusa; Joon Kim; Ma. Carmelita R. Alberto; Jonas Ardö; Eugénie S. Euskirchen; Minseok Kang; Takashi Hirano; Joanna Joiner; Hideki Kobayashi; Luca Belelli Marchesini; Lutz Merbold; Akira Miyata; Taku M. Saitoh; Kentaro Takagi; Andrej Varlagin; M. Syndonia Bret-Harte; Kenzo Kitamura; Yoshiko Kosugi; Ayumi Kotani; Kireet Kumar; Shenggong Li; Takashi Machimura; Yojiro Matsuura; Yasuko Mizoguchi; Takeshi Ohta; Sandipan Mukherjee; Yuji Yanagi

The lack of a standardized database of eddy covariance observations has been an obstacle for data-driven estimation of terrestrial CO2 fluxes in Asia. In this study, we developed such a standardized database using 54 sites from various databases by applying consistent postprocessing for data-driven estimation of gross primary productivity (GPP) and net ecosystem CO2 exchange (NEE). Data-driven estimation was conducted by using a machine learning algorithm: support vector regression (SVR), with remote sensing data for 2000 to 2015 period. Site-level evaluation of the estimated CO2 fluxes shows that although performance varies in different vegetation and climate classifications, GPP and NEE at 8days are reproduced (e.g., r2=0.73 and 0.42 for 8day GPP and NEE). Evaluation of spatially estimated GPP with Global Ozone Monitoring Experiment 2 sensor-based Sun-induced chlorophyll fluorescence shows that monthly GPP variations at subcontinental scale were reproduced by SVR (r2=1.00, 0.94, 0.91, and 0.89 for Siberia, East Asia, South Asia, and Southeast Asia, respectively). Evaluation of spatially estimated NEE with net atmosphere-land CO2 fluxes of Greenhouse Gases Observing Satellite (GOSAT) Level 4A product shows that monthly variations of these data were consistent in Siberia and East Asia; meanwhile, inconsistency was found in South Asia and Southeast Asia. Furthermore, differences in the land CO2 fluxes from SVR-NEE and GOSAT Level 4A were partially explained by accounting for the differences in the definition of land CO2 fluxes. These data-driven estimates can provide a new opportunity to assess CO2 fluxes in Asia and evaluate and constrain terrestrial ecosystem models. (Less)


Journal of Forest Research | 2015

Does summer warming reduce black spruce productivity in interior Alaska

Masahito Ueyama; Shinya Kudo; Chie Iwama; Hirohiko Nagano; Hideki Kobayashi; Yoshinobu Harazono; Kenji Yoshikawa

High-latitude warming has had a discernible effect on the productivity of boreal forests. Here, we report a change in the growth responses of a major biome of boreal North America, black spruce, to climatic warming, based on tree rings sampled at 11 sites in interior Alaska. Tree ring growth was negatively correlated with growing season air temperature, but positively correlated with annual precipitation. The magnitude of the negative correlation increased with increasing growing season temperature until the 1980s, suggesting that warming-induced drought restricted the productivity. However, after the mid-1990s, the negative correlation diminished, and tree ring growth responded positively to air temperature, suggesting that the productivity of the high-latitude forest, and potentially its carbon uptake, will increase under expected warming. The future trajectories of high-latitude forests in interior Alaska and associated carbon cycle feedback will depend on the duration and strength of this renewed response under future climatic warming.

Collaboration


Dive into the Masahito Ueyama's collaboration.

Top Co-Authors

Avatar

Yoshinobu Harazono

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuko Saigusa

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiyuki Takahashi

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Akira Miyata

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Masayuki Kondo

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ryuichi Hirata

National Institute for Environmental Studies

View shared research outputs
Researchain Logo
Decentralizing Knowledge