Masahito Yamagata
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masahito Yamagata.
Current Opinion in Cell Biology | 2003
Masahito Yamagata; Joshua R. Sanes; Joshua A. Weiner
Formation, differentiation and plasticity of synapses, the specialized cell-cell contacts through which neurons communicate, all require interactions between pre- and post-synaptic partners. Several synaptically localized adhesion molecules potentially capable of mediating these interactions have been identified recently. Functional studies suggest roles for some of them in target recognition (e.g. SYG-1 and sidekicks), formation and alignment of synaptic specializations (e.g. SynCAM, neuroligin and neurexin), and regulation of synaptic structure and function (e.g. cadherins and syndecan).
Nature | 2008
Masahito Yamagata; Joshua R. Sanes
Synaptic circuits in the retina transform visual input gathered by photoreceptors into messages that retinal ganglion cells (RGCs) send to the brain. Processes of retinal interneurons (amacrine and bipolar cells) form synapses on dendrites of RGCs in the inner plexiform layer (IPL). The IPL is divided into at least 10 parallel sublaminae; subsets of interneurons and RGCs arborize and form synapses in just one or a few of them. These lamina-specific circuits determine the visual features to which RGC subtypes respond. Here we show that four closely related immunoglobulin superfamily (IgSF) adhesion molecules—Dscam (Down’s syndrome cell adhesion molecule), DscamL (refs 6–9), Sidekick-1 and Sidekick-2 (ref. 10)—are expressed in chick by non-overlapping subsets of interneurons and RGCs that form synapses in distinct IPL sublaminae. Moreover, each protein is concentrated within the appropriate sublaminae and each mediates homophilic adhesion. Loss- and gain-of-function studies in vivo indicate that these IgSF members participate in determining the IPL sublaminae in which synaptic partners arborize and connect. Thus, vertebrate Dscams, like Drosophila Dscams, play roles in neural connectivity. Together, our results on Dscams and Sidekicks suggest the existence of an IgSF code for laminar specificity in retina and, by implication, in other parts of the central nervous system.
Nature | 2008
In-Jung Kim; Yifeng Zhang; Masahito Yamagata; Markus Meister; Joshua R. Sanes
The retina contains complex circuits of neurons that extract salient information from visual inputs. Signals from photoreceptors are processed by retinal interneurons, integrated by retinal ganglion cells (RGCs) and sent to the brain by RGC axons. Distinct types of RGC respond to different visual features, such as increases or decreases in light intensity (ON and OFF cells, respectively), colour or moving objects. Thus, RGCs comprise a set of parallel pathways from the eye to the brain. The identification of molecular markers for RGC subsets will facilitate attempts to correlate their structure with their function, assess their synaptic inputs and targets, and study their diversification. Here we show, by means of a transgenic marking method, that junctional adhesion molecule B (JAM-B) marks a previously unrecognized class of OFF RGCs in mice. These cells have asymmetric dendritic arbors aligned in a dorsal-to-ventral direction across the retina. Their receptive fields are also asymmetric and respond selectively to stimuli moving in a soma-to-dendrite direction; because the lens reverses the image of the world on the retina, these cells detect upward motion in the visual field. Thus, JAM-B identifies a unique population of RGCs in which structure corresponds remarkably to function.
Cell | 2002
Masahito Yamagata; Joshua A. Weiner; Joshua R. Sanes
A major determinant of specific connectivity in the central nervous system is that synapses made by distinct afferent populations are restricted to particular laminae in their target area. We identify Sidekick (Sdk)-1 and -2, homologous transmembrane immunoglobulin superfamily molecules that mediate homophilic adhesion in vitro and direct laminar targeting of neurites in vivo. sdk-1 and -2 are expressed by nonoverlapping subsets of retinal neurons; each sdk is expressed by presynaptic (amacrine and bipolar) and postsynaptic (ganglion) cells that project to common inner plexiform (synaptic) sublaminae. Sdk proteins are concentrated at synaptic sites, and Sdk-positive synapses are restricted to the 2 (of > or =10) sublaminae to which sdk-expressing cells project. Ectopic expression of Sdk in Sdk-negative cells redirects their processes to a Sdk-positive sublamina. These results implicate Sdks as determinants of lamina-specific synaptic connectivity.
The Journal of Neuroscience | 2011
Jeremy N. Kay; Irina De la Huerta; In-Jung Kim; Yifeng Zhang; Masahito Yamagata; Monica W. Chu; Markus Meister; Joshua R. Sanes
The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.
Annual Review of Cell and Developmental Biology | 2009
Joshua R. Sanes; Masahito Yamagata
The most impressive structural feature of the nervous system is the specificity of its synaptic connections. Even after axons have navigated long distances to reach target areas, they must still choose appropriate synaptic partners from the many potential partners within easy reach. In many cases, axons also select a particular domain of the postsynaptic cell on which to form a synapse. Thus, synapse formation is selective at both cellular and subcellular levels. Unsurprisingly, the nervous system uses multiple mechanisms to ensure proper connectivity; these include complementary labels, coordinated growth of synaptic partners, sorting of afferents, prohibition or elimination of inappropriate synapses, respecification of targets, and use of short-range guidance mechanisms or intermediate targets. Specification of any circuit is likely to involve integration of multiple mechanisms. Recent studies of vertebrate and invertebrate systems have led to the identification of molecules that mediate a few of these interactions.
British Journal of Cancer | 1998
Masahito Yamagata; K. Hasuda; T. Stamato; If Tannock
Solid tumours develop an acidic extracellular environment with high concentration of lactic acid, and lactic acid produced by glycolysis has been assumed to be the major cause of tumour acidity. Experiments using lactate dehydrogenase (LDH)-deficient ras-transfected Chinese hamster ovarian cells have been undertaken to address directly the hypothesis that lactic acid production is responsible for tumour acidification. The variant cells produce negligible quantities of lactic acid and consume minimal amounts of glucose compared with parental cells. Lactate-producing parental cells acidified lightly-buffered medium but variant cells did not. Tumours derived from parental and variant cells implanted into nude mice were found to have mean values of extracellular pH (pHe) of 7.03 +/- 0.03 and 7.03 +/- 0.05, respectively, both of which were significantly lower than that of normal muscle (pHe = 7.43 +/- 0.03; P < 0.001). Lactic acid concentration in variant tumours (450 +/- 90 microg g(-1) wet weight) was much lower than that in parental tumours (1880 +/- 140 microg/g(-1)) and similar to that in serum (400 +/- 35 microg/g(-1)). These data show discordance between mean levels of pHe and lactate content in tumours; the results support those of Newell et al (1993) and suggest that the production of lactic acid via glycolysis causes acidification of culture medium, but is not the only mechanism, and is probably not the major mechanism responsible for the development of an acidic environment within solid tumours.
Current Opinion in Neurobiology | 1999
Joshua R. Sanes; Masahito Yamagata
In many parts of the vertebrate central nervous system, inputs of distinct types confine their synapses to individual laminae. Such laminar specificity is a major determinant of synaptic specificity. Recent studies of several laminated structures have begun to identify some of the cells (such as guidepost neurons in hippocampus), molecules (such as N-cadherin in optic tectum, semaphorin/collapsin in spinal cord, and ephrins in cerebral cortex), and mechanisms (such as activity-dependent refinement in lateral geniculate) that combine to generate laminar specificity.
The EMBO Journal | 1988
Yasuyoshi Nishida; Hata M; Ayaki T; Ryo H; Masahito Yamagata; Shimizu K; Nishizuka Y
The genomic and cDNA fragments of Drosophila melanogaster, homologous to human c‐raf‐1, were cloned. The nucleotide sequence predicted the primary structure of a polypeptide of 666 amino acid residues with a highly conserved Ser‐Thr kinase domain on its carboxy terminal half. Draf‐1 was mapped to the 2F region of the X chromosome. Two newly induced recessive lethals belonging to a complementation group in this region were identified to be defective in Draf‐1 by P element‐mediated rescue experiments. The mutants die at larval/pupal stages. The mutant larvae are apparently normal, but they harbor serious defects in the organs containing proliferating cells of both somatic and germ line origins. Maternal effects on embryogenesis indicated that Draf‐1 is also required in early larval development.
Anatomy and Embryology | 1993
Masahito Yamagata; Tamayuki Shinomura; Koji Kimata
PG-M and PG-H, chick large chondroitin sulfate proteoglycans corresponding to versican (fibroblasttype proteoglycan) and aggrecan (cartilage-characteristic proteoglycan), respectively, which are found in mammals, have been characterized in various tissues of chick embryos. Their distribution and the compositions of the core molecules were analyzed by immunofluorescence staining and immunoblotting, respectively, using various monospecific antibodies. Molecules reactive to a monoclonal antibody to the PG-M core protein (designated MY-174) were distributed in various tissues, including aorta, lung, cornea, brain, skeletal muscle and dermis. Immunoblotting with MY-174 of the chondroitinase ABC-digested tissue extracts showed a tissue variation of MY-174-reactive core molecules (550-kD, 500-kD, 450kD, and 350-300-kD). In contrast, PG-H, besides massive occurrence in cartilage, was only found in a few tissues such as aorta and brain. In addition, PG-H in aorta, cornea, and skin was atypical in structure, because it lacked keratan sulfate. The expression of PG-M in developing chick embryos was then examined. PG-M was found in some developmentally active areas, such as the perinotochordal mesenchyme between notochord and neural tube, the basement membranes facing neuroepithelial cells, and condensing mesenchymal cells in limb buds, suggesting some functions distinctive of the developing tissues.