Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaho Okada is active.

Publication


Featured researches published by Masaho Okada.


Stem Cells | 2013

Human Pericytes for Ischemic Heart Repair

Chien Wen Chen; Masaho Okada; Jonathan D. Proto; Xueqin Gao; Naosumi Sekiya; Sarah A Beckman; Mirko Corselli; Mihaela Crisan; Arman Saparov; Kimimasa Tobita; Bruno Péault; Johnny Huard

Human microvascular pericytes (CD146+/34−/45−/56−) contain multipotent precursors and repair/regenerate defective tissues, notably skeletal muscle. However, their ability to repair the ischemic heart remains unknown. We investigated the therapeutic potential of human pericytes, purified from skeletal muscle, for treating ischemic heart disease and mediating associated repair mechanisms in mice. Echocardiography revealed that pericyte transplantation attenuated left ventricular dilatation and significantly improved cardiac contractility, superior to CD56+ myogenic progenitor transplantation, in acutely infarcted mouse hearts. Pericyte treatment substantially reduced myocardial fibrosis and significantly diminished infiltration of host inflammatory cells at the infarct site. Hypoxic pericyte‐conditioned medium suppressed murine fibroblast proliferation and inhibited macrophage proliferation in vitro. High expression by pericytes of immunoregulatory molecules, including interleukin‐6, leukemia inhibitory factor, cyclooxygenase‐2, and heme oxygenase‐1, was sustained under hypoxia, except for monocyte chemotactic protein‐1. Host angiogenesis was significantly increased. Pericytes supported microvascular structures in vivo and formed capillary‐like networks with/without endothelial cells in three‐dimensional cocultures. Under hypoxia, pericytes dramatically increased expression of vascular endothelial growth factor‐A, platelet‐derived growth factor‐β, transforming growth factor‐β1 and corresponding receptors while expression of basic fibroblast growth factor, hepatocyte growth factor, epidermal growth factor, and angiopoietin‐1 was repressed. The capacity of pericytes to differentiate into and/or fuse with cardiac cells was revealed by green fluorescence protein labeling, although to a minor extent. In conclusion, intramyocardial transplantation of purified human pericytes promotes functional and structural recovery, attributable to multiple mechanisms involving paracrine effects and cellular interactions. STEM CELLS2013;31:305–316


Molecular Biology of the Cell | 2009

Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells.

Kenneth L. Urish; Joseph B. Vella; Masaho Okada; Bridget M. Deasy; Kimimasa Tobita; Bradley B. Keller; Baohong Cao; Jon D. Piganelli; Johnny Huard

Stem cells are classically defined by their multipotent, long-term proliferation, and self-renewal capabilities. Here, we show that increased antioxidant capacity represents an additional functional characteristic of muscle-derived stem cells (MDSCs). Seeking to understand the superior regenerative capacity of MDSCs compared with myoblasts in cardiac and skeletal muscle transplantation, our group hypothesized that survival of the oxidative and inflammatory stress inherent to transplantation may play an important role. Evidence of increased enzymatic and nonenzymatic antioxidant capacity of MDSCs were observed in terms of higher levels of superoxide dismutase and glutathione, which appears to confer a differentiation and survival advantage. Further when glutathione levels of the MDSCs are lowered to that of myoblasts, the transplantation advantage of MDSCs over myoblasts is lost when transplanted into both skeletal and cardiac muscles. These findings elucidate an important cause for the superior regenerative capacity of MDSCs, and provide functional evidence for the emerging role of antioxidant capacity as a critical property for MDSC survival post-transplantation.


Journal of the American College of Cardiology | 2008

Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium.

Masaho Okada; Thomas Payne; Bo Zheng; Hideki Oshima; Nobuo Momoi; Kimimasa Tobita; Bradley B. Keller; Julie A. Phillippi; Bruno Péault; Johnny Huard

OBJECTIVES The aim of this study was to evaluate the therapeutic potential of human skeletal muscle-derived myoendothelial cells for myocardial infarct repair. BACKGROUND We have recently identified and purified a novel population of myoendothelial cells from human skeletal muscle. These cells coexpress myogenic and endothelial cell markers and produce robust muscle regeneration when injected into cardiotoxin-injured skeletal muscle. METHODS Myoendothelial cells were isolated from biopsies of human skeletal muscle using a fluorescence-activated cell sorter along with populations of regular myoblasts and endothelial cells. Acute myocardial infarction was induced in male immune-deficient mice, and cells were directly injected into the ischemic area. Cardiac function was assessed by echocardiography, and donor cell engraftment, angiogenesis, scar tissue, endogenous cardiomyocyte proliferation, and apoptosis were all evaluated by immunohistochemistry. RESULTS A greater improvement in left ventricular function was observed after intramyocardial injection of myoendothelial cells when compared with that seen in hearts injected with myoblast or endothelial cells. Transplanted myoendothelial cells generated robust engraftments within the infarcted myocardium, and also stimulated angiogenesis, attenuation of scar tissue, and proliferation and survival of endogenous cardiomyocytes more effectively than transplanted myoblasts or endothelial cells. CONCLUSIONS Our findings suggest that myoendothelial cells represent a novel cell population from human skeletal muscle that may hold promise for cardiac repair.


Biomaterials | 2010

Differential efficacy of gels derived from small intestinal submucosa as an injectable biomaterial for myocardial infarct repair

Masaho Okada; Thomas Payne; Hideki Oshima; Nobuo Momoi; Kimimasa Tobita; Johnny Huard

Injectable biomaterials have been recently investigated as a therapeutic approach for cardiac repair. Porcine-derived small intestinal submucosa (SIS) material is currently used in the clinic to promote accelerated wound healing for a variety of disorders. In this study, we hypothesized that gels derived from SIS extracellular matrix would be advantageous as an injectable material for cardiac repair. We evaluated 2 forms of SIS gel, types B (SIS-B) and C (SIS-C), for their ability to provide a therapeutic effect when injected directly into ischemic myocardium using a murine model of an acute myocardial infarction. Echocardiography analysis at both 2 and 6 weeks after infarction demonstrated preservation of end-systolic left ventricular geometry and improvement of cardiac contractility in the hearts injected with SIS-B when compared with control hearts injected with saline. However, the SIS-C gel provided no functional efficacy in comparison with control. Histological analysis revealed that SIS-B reduced infarct size and induced angiogenesis relative to control, whereas injection of SIS-C had minimal effect on these histological parameters. Characterization of both gels revealed differential growth factor content with SIS-B exhibiting higher levels of basic fibroblast growth factor than SIS-C, which may explain, at least in part, the differential histological and functional results. This study suggests that SIS gel offers therapeutic potential as an injectable material for the repair of ischemic myocardium. Further understanding of SIS gel characteristics, such as biological and physical properties, that are critical determinants of efficacy would be important for optimization of this biomaterial for cardiac repair.


Molecular Therapy | 2010

Cellular antioxidant levels influence muscle stem cell therapy

Lauren Drowley; Masaho Okada; Sarah A Beckman; Joseph B. Vella; Bradley B. Keller; Kimimasa Tobita; Johnny Huard

Although cellular transplantation has been shown to promote improvements in cardiac function following injury, poor cell survival following transplantation continues to limit the efficacy of this therapy. We have previously observed that transplantation of muscle-derived stem cells (MDSCs) improves cardiac function in an acute murine model of myocardial infarction to a greater extent than myoblasts. This improved regenerative capacity of MDSCs is linked to their increased level of antioxidants such as glutathione (GSH) and superoxide dismutase. In the current study, we demonstrated the pivotal role of antioxidant levels on MDSCs survival and cardiac functional recovery by either reducing the antioxidant levels with diethyl maleate or increasing antioxidant levels with N-acetylcysteine (NAC). Both the anti- and pro-oxidant treatments dramatically influenced the survival of the MDSCs in vitro. When NAC-treated MDSCs were transplanted into infarcted myocardium, we observed significantly improved cardiac function, decreased scar tissue formation, and increased numbers of CD31(+) endothelial cell structures, compared to the injection of untreated and diethyl maleate-treated cells. These results indicate that elevating the levels of antioxidants in MDSCs with NAC can significantly influence their tissue regeneration capacity.


Molecular Therapy | 2012

Human Skeletal Muscle Cells With a Slow Adhesion Rate After Isolation and an Enhanced Stress Resistance Improve Function of Ischemic Hearts

Masaho Okada; Thomas Payne; Lauren Drowley; Ron Jankowski; Nobuo Momoi; Sarah A Beckman; William C.W. Chen; Bradley B. Keller; Kimimasa Tobita; Johnny Huard

Identification of cells that are endowed with maximum potency could be critical for the clinical success of cell-based therapies. We investigated whether cells with an enhanced efficacy for cardiac cell therapy could be enriched from adult human skeletal muscle on the basis of their adhesion properties to tissue culture flasks following tissue dissociation. Cells that adhered slowly displayed greater myogenic purity and more readily differentiated into myotubes in vitro than rapidly adhering cells (RACs). The slowly adhering cell (SAC) population also survived better than the RAC population in kinetic in vitro assays that simulate conditions of oxidative and inflammatory stress. When evaluated for the treatment of a myocardial infarction (MI), intramyocardial injection of the SACs more effectively improved echocardiographic indexes of left ventricular (LV) remodeling and contractility than the transplantation of the RACs. Immunohistological analysis revealed that hearts injected with SACs displayed a reduction in myocardial fibrosis and an increase in infarct vascularization, donor cell proliferation, and endogenous cardiomyocyte survival and proliferation in comparison with the RAC-treated hearts. In conclusion, these results suggest that adult human skeletal muscle-derived cells are inherently heterogeneous with regard to their efficacy for enhancing cardiac function after cardiac implantation, with SACs outperforming RACs.


Molecular Therapy | 2011

Lentivirus-mediated Wnt11 Gene Transfer Enhances Cardiomyogenic Differentiation of Skeletal Muscle-derived Stem Cells

Guosheng Xiang; Qing Yang; Bing Wang; Naosumi Sekiya; Xiaodong Mu; Ying Tang; Chien Wen Chen; Masaho Okada; James Cummins; Burhan Gharaibeh; Johnny Huard

Wnt signaling plays a crucial role in regulating cell proliferation, differentiation and inducing cardiomyogenesis. Skeletal muscle-derived stem cells (MDSCs) have been shown to be multipotent; however, their potential to aid in the healing of the heart after myocardial infarction appears to be due to the paracrine effects they impart on the host environment. The goal of this study was to investigate whether Wnt11 could promote the differentiation of MDSCs into cardiomyocytes and enhance the repair of infarcted myocardium. MDSCs transduced with a lentivirus encoding for Wnt11 increased mRNA and protein expression of the early cardiac markers NK2 transcription factor related 5 (NKx2.5) and Connexin43 (Cx43) and also led to an increased expression of late-stage cardiac markers including: α, β-myosin heavy chain (MHC) and brain natriuretic protein (BNP) at the mRNA level, and MHC and Troponin I (TnI) at the protein level. We also observed that Wnt11 expression significantly enhanced c-jun N-terminal kinase activity in transduced MDSCs, and that some of the cells beat spontaneously but are not fully differentiated cardiomyocytes. Finally, lentivirus-Wnt11-transduced MDSCs showed greater survival and cardiac differentiation after being transplanted into acutely infarct-injured myocardium. These findings could one day lead to strategies that could be utilized in cardiomyoplasty treatments of myocardial infarction.


Molecular Therapy | 2013

Muscle-derived Stem Cell Sheets Support Pump Function and Prevent Cardiac Arrhythmias in a Model of Chronic Myocardial Infarction

Naosumi Sekiya; Kimimasa Tobita; Sarah A Beckman; Masaho Okada; Burhan Gharaibeh; Yoshiki Sawa; Robert L. Kormos; Johnny Huard

Direct intracardiac cell injection for heart repair is hindered by numerous limitations including: cell death, poor spreading of the injected cells, arrhythmia, needle injury, etc. Tissue-engineered cell sheet implantation has the potential to overcome some of these limitations. We evaluated whether the transplantation of a muscle-derived stem cell (MDSC) sheet could improve the regenerative capacity of MDSCs in a chronic model of myocardial infarction. MDSC sheet-implanted mice displayed a reduction in left ventricle (LV) dilation and sustained LV contraction compared with the other groups. The MDSC sheet formed aligned myotubes and produced a significant increase in capillary density and a reduction of myocardial fibrosis compared with the other groups. Hearts transplanted with the MDSC sheets did not display any significant arrhythmias and the donor MDSC survival rate was higher than the direct myocardial MDSC injection group. MDSC sheet implantation yielded better functional recovery of chronic infarcted myocardium without any significant arrhythmic events compared with direct MDSC injection, suggesting this cell sheet delivery system could significantly improve the myocardial regenerative potential of the MDSCs.


Cell Transplantation | 2009

Sex of muscle stem cells does not influence potency for cardiac cell therapy

Lauren Drowley; Masaho Okada; Thomas Payne; Gregory P Botta; Hideki Oshima; Bradley B. Keller; Kimimasa Tobita; Johnny Huard

We have previously shown that populations of skeletal muscle-derived stem cells (MDSCs) exhibit sex-based differences for skeletal muscle and bone repair, with female cells demonstrating superior engrafting abilities to males in skeletal muscle while male cells differentiating more robustly toward the osteogenic and chondrogenic lineages. In this study, we tested the hypothesis that the therapeutic capacity of MDSCs transplanted into myocardium is influenced by sex of donor MDSCs or recipient. Male and female MDSCs isolated from the skeletal muscle of 3-week-old mice were transplanted into recipient male or female dystrophin-deficient (mdx) hearts or into the hearts of male SCID mice following acute myocardial infarction. In the mdx model, no difference was seen in engraftment or blood vessel formation based on donor cell or recipient sex. In the infarction model, MDSC-transplanted hearts showed higher postinfarction angiogenesis, less myocardial scar formation, and improved cardiac function compared to vehicle controls. However, sex of donor MDSCs had no significant effects on engraftment, angiogenesis, and cardiac function. VEGF expression, a potent angiogenic factor, was similar between male and female MDSCs. Our results suggest that donor MDSC or recipient sex has no significant effect on the efficiency of MDSC-triggered myocardial engraftment or regeneration following cardiac injury. The ability of the MDSCs to improve cardiac regeneration and repair through promotion of angiogenesis without differentiation into the cardiac lineage may have contributed to the lack of sex difference observed in these models.


ASME 2008 Summer Bioengineering Conference, Parts A and B | 2008

Mechanical stimulation improves muscle-derived stem cell transplantation for cardiac repair

Theresa R. Cassino; Masaho Okada; Lauren Drowley; Johnny Huard; Philip R. LeDuc

Muscle-derived stem cells (MDSCs) have been successfully transplanted into both skeletal (1) and cardiac muscle (2) of dystrophin-deficient (mdx) mice, and show potential for improving cardiac and skeletal dysfunction in diseases like Duchenne muscular dystrophy (DMD). Our previous study explored the regeneration of dystrophin-expressing myocytes following MDSC transplantation into environments with distinct blood flow and chemical/mechanical stimulation attributes. After MDSC transplantation within left ventricular myocardium and gastrocnemius (GN) muscles of the same mdx mice, significantly more dystrophin-positive fibers were found within the myocardium than in the GN. We hypothesized that the differences in mechanical loading of the two environments influenced the transplantation and explored whether using MDSCs exposed to mechanical stimulation prior to transplantation could improve transplantation. Our study shows increased engraftment into the heart and GN muscle for cells pretreated with mechanical stretch for 24 hours. This increase was significant for transplantation into the heart. These studies have implications in a variety of applications including mechanotransduction, stem cell biology, and Duchenne muscular dystrophy.Copyright

Collaboration


Dive into the Masaho Okada's collaboration.

Top Co-Authors

Avatar

Johnny Huard

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauren Drowley

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Thomas Payne

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Hideki Oshima

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nobuo Momoi

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip R. LeDuc

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge