Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masakatsu Watanabe is active.

Publication


Featured researches published by Masakatsu Watanabe.


Development | 2014

Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning.

Hiroki Hamada; Masakatsu Watanabe; Hiu Eunice Lau; Tomoki Nishida; Toshiaki Hasegawa; David M. Parichy; Shigeru Kondo

The skin pigment pattern of zebrafish is a good model system in which to study the mechanism of biological pattern formation. Although it is known that interactions between melanophores and xanthophores play a key role in the formation of adult pigment stripes, molecular mechanisms for these interactions remain largely unknown. Here, we show that Delta/Notch signaling contributes to these interactions. Ablation of xanthophores in yellow stripes induced the death of melanophores in black stripes, suggesting that melanophores require a survival signal from distant xanthophores. We found that deltaC and notch1a were expressed by xanthophores and melanophores, respectively. Moreover, inhibition of Delta/Notch signaling killed melanophores, whereas activation of Delta/Notch signaling ectopically in melanophores rescued the survival of these cells, both in the context of pharmacological inhibition of Delta/Notch signaling and after ablation of xanthophores. Finally, we showed by in vivo imaging of cell membranes that melanophores extend long projections towards xanthophores in the yellow stripes. These data suggest that Delta/Notch signaling is responsible for a survival signal provided by xanthophores to melanophores. As cellular projections can enable long-range interaction between membrane-bound ligands and their receptors, we propose that such projections, combined with direct cell-cell contacts, can substitute for the effect of a diffusible factor that would be expected by the conventional reaction-diffusion (Turing) model.


Plant and Cell Physiology | 2011

Novel Photosensory Two-Component System (PixA–NixB–NixC) Involved in the Regulation of Positive and Negative Phototaxis of Cyanobacterium Synechocystis sp. PCC 6803

Rei Narikawa; Fumiko Suzuki; Shizue Yoshihara; Shoichi Higashi; Masakatsu Watanabe; Masahiko Ikeuchi

Two wild-type substrains of a motile cyanobacterium Synechocystis sp. PCC 6803 show positive phototaxis toward a light source (PCC-P) and negative phototaxis away from light (PCC-N). In this study, we found that a novel two-component system of photoresponse is involved in the phototactic regulation. Inactivation of slr1212 (pixA), which encodes a photoreceptor histidine kinase, reverted the positive phototaxis of PCC-P to negative phototaxis, and inactivation of the downstream slr1213 (nixB) and slr1214 (nixC), which encode AraC-like transcription factor-type and PatA-type response regulators, respectively, reverted the negative phototaxis of PCC-N to positive phototaxis. Opposite effects of pixA and nixBC disruption implies an unexpected signal transduction pathway in the switching of positive and negative phototaxis. The blue/green-type cyanobacteriochrome GAF domain of PixA was expressed in Synechocystis and phycocyanobilin-producing Escherichia coli. The holoprotein covalently bound a chromophore phycoviolobilin and showed reversible photoconversion between the violet- (Pv, λ(peak) = 396 nm) and green-absorbing (Pg, λ(peak) = 533 nm) forms, although the protein from E. coli partially bound a precursor phycocyanobilin. These results were discussed with regard to an idea that PixA serves as a violet light receptor for switching of positive and negative phototaxis by transcriptional and functional regulation.


PLOS Genetics | 2012

Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11.

Dae Seok Eom; Shinya Inoue; Larissa B. Patterson; Tiffany N. Gordon; Rebecca Slingwine; Shigeru Kondo; Masakatsu Watanabe; David M. Parichy

The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.


Trends in Genetics | 2015

Is pigment patterning in fish skin determined by the Turing mechanism

Masakatsu Watanabe; Shigeru Kondo

More than half a century ago, Alan Turing postulated that pigment patterns may arise from a mechanism that could be mathematically modeled based on the diffusion of two substances that interact with each other. Over the past 15 years, the molecular and genetic tools to verify this prediction have become available. Here, we review experimental studies aimed at identifying the mechanism underlying pigment pattern formation in zebrafish. Extensive molecular genetic studies in this model organism have revealed the interactions between the pigment cells that are responsible for the patterns. The mechanism discovered is substantially different from that predicted by the mathematical model, but it retains the property of local activation and long-range inhibition, a necessary condition for Turing pattern formation. Although some of the molecular details of pattern formation remain to be elucidated, current evidence confirms that the underlying mechanism is mathematically equivalent to the Turing mechanism.


Pigment Cell & Melanoma Research | 2012

Changing clothes easily: connexin41.8 regulates skin pattern variation.

Masakatsu Watanabe; Shigeru Kondo

The skin patterns of animals are very important for their survival, yet the mechanisms involved in skin pattern formation remain unresolved. Turing’s reaction–diffusion model presents a well‐known mathematical explanation of how animal skin patterns are formed, and this model can predict various animal patterns that are observed in nature. In this study, we used transgenic zebrafish to generate various artificial skin patterns including a narrow stripe with a wide interstripe, a narrow stripe with a narrow interstripe, a labyrinth, and a ‘leopard’ pattern (or donut‐like ring pattern). In this process, connexin41.8 (or its mutant form) was ectopically expressed using the mitfa promoter. Specifically, the leopard pattern was generated as predicted by Turing’s model. Our results demonstrate that the pigment cells in animal skin have the potential and plasticity to establish various patterns and that the reaction–diffusion principle can predict skin patterns of animals.


Pigment Cell & Melanoma Research | 2014

Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes

Shinya Inoue; Shigeru Kondo; David M. Parichy; Masakatsu Watanabe

Skin pigment pattern formation in zebrafish requires pigment‐cell autonomous interactions between melanophores and xanthophores, yet the molecular bases for these interactions remain largely unknown. Here, we examined the dali mutant that exhibits stripes in which melanophores are intermingled abnormally with xanthophores. By in vitro cell culture, we found that melanophores of dali mutants have a defect in motility and that interactions between melanophores and xanthophores are defective as well. Positional cloning and rescue identified dali as tetraspanin 3c (tspan3c), encoding a transmembrane scaffolding protein expressed by melanophores and xanthophores. We further showed that dali mutant Tspan3c expressed in HeLa cell exhibits a defect in N‐glycosylation and is retained inappropriately in the endoplasmic reticulum. Our results are the first to identify roles for a tetraspanin superfamily protein in skin pigment pattern formation and suggest new mechanisms for the establishment and maintenance of zebrafish stripe boundaries.


Scientific Reports | 2012

Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish

Masakatsu Watanabe; Daisuke Watanabe; Shigeru Kondo

Gap junctions allow the direct and bidirectional transfer of small molecules between cells. Polyamine sensitivity, which has been observed for a certain gap junction in vitro, confers rectification property to gap junction. Here we report that the polyamine sensitivity of gap junctions in vivo is crucial for skin pattern formation in zebrafish. Transgenic experiments have revealed that several connexin genes were able to rescue the spot phenotype of mutant zebrafish. Mutational analyses of the N-terminal region of connexins revealed that the ExxxE motif, a hypothetical polyamine-binding site, was important for connexins role in pattern formation. Ectopic expression of spermidine/spermine N1-acetyltransferase (SSAT), a polyamine metabolic enzyme, also caused stripe pattern changes, which further indicates that the polyamine sensitivity of gap junctions is crucial. This is the first report to show that polyamine sensitivity has a physiologically relevant function and is related to skin pattern formation in animals.


Journal of Biological Chemistry | 2016

The Physiological Characterization of Connexin41.8 and Connexin39.4, Which Are Involved in the Striped Pattern Formation of Zebrafish.

Masakatsu Watanabe; Risa Sawada; Toshihiro Aramaki; I. Martha Skerrett; Shigeru Kondo

The zebrafish has a striped skin pattern on its body, and Connexin41.8 (Cx41.8) and Cx39.4 are involved in striped pattern formation. Mutations in these connexins change the striped pattern to a spot or labyrinth pattern. In this study, we characterized Cx41.8 and Cx39.4 after expression in Xenopus oocytes. In addition, we analyzed Cx41.8 mutants Cx41.8I203F and Cx41.8M7, which caused spot or labyrinth skin patterns, respectively, in transgenic zebrafish. In the electrophysiological analysis, the gap junctions formed by Cx41.8 and Cx39.4 showed distinct sensitivity to transjunctional voltage. Analysis of non-junctional (hemichannel) currents revealed a large voltage-dependent current in Cx39.4-expressing oocytes that was absent in cells expressing Cx41.8. Junctional currents induced by both Cx41.8 and Cx39.4 were reduced by co-expression of Cx41.8I203F and abolished by co-expression of Cx41.8M7. In the transgenic experiment, Cx41.8I203F partially rescued the Cx41.8 null mutant phenotype, whereas Cx41.8M7 failed to rescue the null mutant, and it elicited a more severe phenotype than the Cx41.8 null mutant, as evidenced by a smaller spot pattern. Our results provide evidence that gap junctions formed by Cx41.8 play an important role in stripe/spot patterning and suggest that mutations in Cx41.8 can effect patterning by way of reduced function (I203F) and dominant negative effects (M7). Our results suggest that functional differences in Cx41.8 and Cx39.4 relate to spot or labyrinth mutant phenotypes and also provide evidence that these two connexins interact in vivo and in vitro.


Science | 2015

Comment on “Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish”

Masakatsu Watanabe; Shigeru Kondo

Mahalwar et al. (Reports, 12 September 2014, p. 1362) observed the onset of pigment pattern formation in zebrafish. They concluded that their data do not support our Turing mechanism–based model and presented an essentially different mechanism. Here, we clarify their misunderstanding that may have caused their conclusion and explain past experimental data that do not support their proposed mechanism.


Journal of Biological Chemistry | 2016

Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish.

Akihiro Misu; Hiroaki Yamanaka; Toshihiro Aramaki; Shigeru Kondo; I. Martha Skerrett; M. Kathryn Iovine; Masakatsu Watanabe

Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish mutant, steopsel (stptl28d). Vertebrae of stptl28d/+ fish look normal in larvae (∼30 days) but are distinctly shorter (59–81%) than vertebrae of wild type fish in adults. In contrast, the lengths of fin rays are only slightly shorter (∼95%) than those of the wild type in both larvae and adults. Positional cloning revealed that stp encodes Connexin43 (Cx43), a connexin that functions as a gap junction and hemichannel. Interestingly, cx43 was also identified as the gene causing the short-of-fin (sof) phenotype, in which the fin ray segments are shorter but the vertebrae are normal. To identify the cause of this difference between the alleles, we expressed Cx43 exogenously in Xenopus oocytes and performed electrophysiological analysis of the mutant proteins. Gap junction coupling induced by Cx43stp or Cx43sof was reduced compared with Cx43-WT. On the other hand, only Cx43stp induced abnormally high (50× wild type) transmembrane currents through hemichannels. Our results suggest that Cx43 plays critical and diverse roles in zebrafish bone growth.

Collaboration


Dive into the Masakatsu Watanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Watanabe

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideki Kandori

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge