Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masakazu Ishii is active.

Publication


Featured researches published by Masakazu Ishii.


Circulation | 2006

The Impact of the Capability of Circulating Progenitor Cell to Differentiate on Myocardial Salvage in Patients With Primary Acute Myocardial Infarction

Yasushi Numaguchi; Takahito Sone; Kenji Okumura; Masakazu Ishii; Yasuhiro Morita; Ryuji Kubota; Kazuhiko Yokouchi; Hajime Imai; Mitsunori Harada; Hiroyuki Osanai; Takahisa Kondo; Toyoaki Murohara

Background— Circulating endothelial progenitor cells (EPCs) are known to be involved in vasculogenesis and mobilized after acute myocardial infarction (AMI). To test the hypothesis that the angiogenic function of EPCs affects post-myocardial infarction (MI) myocardial salvage, we evaluated the number and potential differentiation of EPCs and compared these data with clinical parameters 6 months after MI. Methods and Results— Consecutive 51 patients (age, 61±8 years, mean±SD) with primary AMI who were successfully treated with stenting were enrolled. EPC identified as CD45low, CD34+, CD133+, and VEGFR2+ was quantified by a flow cytometry. The potential of EPCs to differentiate into endothelial cells (EPC differentiation) was also confirmed by the upregulation of CD31 and VEGFR2 after 7 days of culture. According to the proportion of EPC fraction, patients were divided into 2 groups (cut-off value=median). Although no difference was seen in myocardial damage shown by mean peak CK leakage and mean area at risk between the differentiated group (n=26) and nondifferentiated group (n=25), the number of attached cell was greater in differentiated group than in the nondifferentiated group (P=0.023). Left ventricular function and ischemic damaged area were assessed by scintigraphic images of 123I-BMIPP in the acute phase and 99mTc-tetrofosmin in the chronic phase. We found that a greater increase in myocardial salvage (P=0.0091), decrease in end-systolic volume (P=0.012), and recovery of ejection fraction (P=0.011) occurred in the group with differentiated EPCs than in the nondifferentiated group. Conclusions— In patients with primary AMI, the capability of EPCs to differentiate influences the functional improvement and infarct size reduction, indicating that manipulation of EPCs could be a novel therapeutic target to salvage ischemic damage.


Circulation-cardiovascular Interventions | 2010

Impact of a Single Intracoronary Administration of Adiponectin on Myocardial Ischemia/Reperfusion Injury in a Pig Model

Kazuhisa Kondo; Rei Shibata; Kazumasa Unno; Masayuki Shimano; Masakazu Ishii; Tetsutaro Kito; Satoshi Shintani; Kenneth Walsh; Noriyuki Ouchi; Toyoaki Murohara

Background—Adiponectin plays a protective role in the development of obesity-linked disorders. We demonstrated that adiponectin exerts beneficial actions on acute ischemic injury in mice hearts. However, the effects of adiponectin treatment in large animals and its feasibility in clinical practice have not been investigated. This study investigated the effects of intracoronary administration of adiponectin on myocardial ischemia-reperfusion (I/R) injury in pigs. Methods and Results—The left anterior descending coronary artery was occluded in pigs for 45 minutes and then reperfused for 24 hours. Recombinant adiponectin protein was given as a bolus intracoronary injection during ischemia. Cardiac functional parameters were measured by a manometer-tipped catheter. Apoptosis was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling staining. Tumor necrosis factor-α and interleukin-10 transcripts were analyzed by real-time polymerase chain reaction. Serum levels of derivatives of reactive oxygen metabolites and biological antioxidant potential were measured. Adiponectin protein was determined by immunohistochemical and Western blot analyses. Intracoronary administration of adiponectin protein led to a reduction in myocardial infarct size and improvement of left ventricular function in pigs after I/R. Injected adiponectin protein accumulated in the I/R-injured heart. Adiponectin treatment resulted in decreased tumor necrosis factor-α and increased interleukin-10 mRNA levels in the myocardium after I/R. Adiponectin-treated pigs had reduced apoptotic activity in the I/R-injured heart and showed increased biological antioxidant potential levels and decreased derivatives of reactive oxygen metabolite levels in the blood stream after I/R. Conclusions—These data suggest that adiponectin protects against I/R injury in a preclinical pig model through its ability to suppress inflammation, apoptosis, and oxidative stress. Administration of intracoronary adiponectin could be a useful adjunctive therapy for acute myocardial infarction.


American Journal of Cardiology | 2008

Usefulness of Adiponectin to Predict Myocardial Salvage Following Successful Reperfusion in Patients With Acute Myocardial Infarction

Rei Shibata; Yasushi Numaguchi; Kunihiro Matsushita; Takahito Sone; Ryuji Kubota; Taiki Ohashi; Masakazu Ishii; Shinji Kihara; Kenneth Walsh; Noriyuki Ouchi; Toyoaki Murohara

Adiponectin is an adipose-derived plasma protein that demonstrates beneficial actions on myocardial injury under ischemic conditions. Circulating endothelial progenitor cells are reported to associate with rescue of cardiac damage after acute myocardial infarction (AMI). We examined whether circulating adiponectin level affects myocardial function and injury in patients with AMI. A total of 48 patients who underwent successful reperfusion treatment after AMI were enrolled. Cardiac function and perfusion defect were assessed by scintigraphic images of iodine-123 beta-methyl iodophenyl pentadecanoic acid in the acute phase and technetium-99m tetrofosmin in the long-term phase. Plasma adiponectin levels were measured by enzyme-linked immunosorbent assay at day 7 after AMI. Plasma adiponectin levels associated positively with myocardial salvage index representing the proportion of initial perfusion defect rescued by reperfusion and recovery of ejection fraction in the long-term phase and negatively with final infarct size. A positive correlation was also observed between adiponectin levels and number of circulating CD34(+) cells as determined by flow cytometry and between myocardial salvage index and recovery of ejection fraction independently associated with circulating CD34(+) cell levels. In conclusion, plasma adiponectin levels predict improvement of cardiac damage and function after reperfusion therapy in patients with AMI, suggesting that adiponectin could serve as a biomarker for assessment of myocardial injury after AMI.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

Enhanced Angiogenesis by Transplantation of Mesenchymal Stem Cell Sheet Created by a Novel Magnetic Tissue Engineering Method

Masakazu Ishii; Rei Shibata; Yasushi Numaguchi; Tetsutaro Kito; Hirohiko Suzuki; Kazunori Shimizu; Akira Ito; Hiroyuki Honda; Toyoaki Murohara

Objective—Therapeutic angiogenesis with cell transplantation represents a novel strategy for severe ischemic diseases. However, some patients have poor response to such conventional injection-based angiogenic cell therapy. Here, we investigated a therapeutic potential of mesenchymal stem cell (MSC) sheet created by a novel magnetite tissue engineering technology for reparative angiogenesis. Methods and Results—Human MSCs incubated with magnetic nanoparticle-containing liposomes were cultured, and a magnet was placed on the reverse side. Magnetized MSCs formed multilayered cell sheets according to magnetic force. Nude mice were subjected to unilateral hind limb ischemia and separated into 3 groups. For the control group, saline was injected into ischemic tissue. In the MSC-injected group, mice received magnetized MSCs by conventional needle injections without sheet formula as a control cell group. In the MSC-sheet group, MSC sheet was layered onto the ischemic tissues before skin closure. Blood flow recovery and the extent of angiogenesis were assessed by a laser Doppler blood flowmetry and histological capillary density, respectively. The MSC-sheet group had a greater angiogenesis in ischemic tissues compared to the control and MSC-injected groups. The angiogenic and tissue-preserving effects of MSC sheets were attributable to an increased expression of vascular endothelial growth factor and reduced apoptosis in ischemic tissues. In cultured MSCs, magnetic labeling itself inhibited apoptosis via a catalase-like antioxidative mechanism. Conclusion—MSC sheet created by the novel magnetic nanoparticle-based tissue engineering technology would represent a new modality for therapeutic angiogenesis and tissue regeneration.


American Journal of Respiratory Cell and Molecular Biology | 2010

Actin Cytoskeleton Regulates Stretch-Activated Ca2+ Influx in Human Pulmonary Microvascular Endothelial Cells

Satoru Ito; Béla Suki; Hiroaki Kume; Yasushi Numaguchi; Masakazu Ishii; Mai Iwaki; Masashi Kondo; Keiji Naruse; Yoshinori Hasegawa; Masahiro Sokabe

During high tidal volume mechanical ventilation in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), regions of the lung are exposed to excessive stretch, causing inflammatory responses and further lung damage. In this study, the effects of mechanical stretch on intracellular Ca(2+) concentration ([Ca(2+)](i)), which regulates a variety of endothelial properties, were investigated in human pulmonary microvascular endothelial cells (HPMVECs). HPMVECs grown on fibronectin-coated silicon chambers were exposed to uniaxial stretching, using a cell-stretching apparatus. After stretching and subsequent unloading, [Ca(2+)](i), as measured by fura-2 fluorescence, was transiently increased in a strain amplitude-dependent manner. The elevation of [Ca(2+)](i) induced by stretch was not evident in the Ca(2+)-free solution and was blocked by Gd(3+), a stretch-activated channel inhibitor, or ruthenium red, a transient receptor potential vanilloid inhibitor. The disruption of actin polymerization with cytochalasin D inhibited the stretch-induced elevation of [Ca(2+)](i). In contrast, increases in [Ca(2+)](i) induced by thapsigargin or thrombin were not affected by cytochalasin D. Increased actin polymerization with sphingosine-1-phosphate or jasplakinolide enhanced the stretch-induced elevation of [Ca(2+)](i). A simple network model of the cytoskeleton was also developed in support of the notion that actin stress fibers are required for efficient force transmission to open stretch-activated Ca(2+) channels. In conclusion, mechanical stretch activates Ca(2+) influx via stretch-activated channels which are tightly regulated by the actin cytoskeleton different from other Ca(2+) influx pathways such as receptor-operated and store-operated Ca(2+) entries in HPMVECs. These results suggest that abnormal Ca(2+) homeostasis because of excessive mechanical stretch during mechanical ventilation may play a role in the progression of ALI/ARDS.


Biochemical and Biophysical Research Communications | 2009

Mechanical stretch enhances IL-8 production in pulmonary microvascular endothelial cells

Mai Iwaki; Satoru Ito; Masataka Morioka; Susumu Iwata; Yasushi Numaguchi; Masakazu Ishii; Masashi Kondo; Hiroaki Kume; Keiji Naruse; Masahiro Sokabe; Yoshinori Hasegawa

In patients with acute respiratory distress syndrome, mechanical over-distension of the lung by a large tidal volume causes further damage and inflammation, called ventilator-induced lung injury (VILI), however, it is unclear how mechanical stretch affects the cellular functions or morphology in human pulmonary microvascular endothelial cells (HPMVECs). IL-8 has been proposed to play an important role in the progression of VILI by activating neutrophils. We demonstrated that HPMVECs exposed to cyclic uni-axial stretch produce IL-8 protein with p38 activation in strain- and time-dependent manners. The IL-8 synthesis was not regulated by other signal transduction pathways such as ERK1/2, JNK, or stretch-activated Ca(2+) channels. Moreover, cyclic stretch enhanced IL-6 and monocyte chemoattractant protein-1 production and reoriented cell perpendicularly to the stretch axis accompanied by actin polymerization. Taken together, IL-8 production by HPMVECs due to excessive mechanical stretch may activate neutrophilic inflammation, which leads to VILI.


BMC Cell Biology | 2010

Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived Flk-1 positive cells

Hirohiko Suzuki; Rei Shibata; Tetsutaro Kito; Masakazu Ishii; Ping Li; Toru Yoshikai; Naomi Nishio; Sachiko Ito; Yasushi Numaguchi; Jun Yamashita; Toyoaki Murohara; Ken-ichi Isobe

BackgroundInduced pluripotent stem (iPS) cells are the novel stem cell population induced from somatic cells. It is anticipated that iPS will be used in the expanding field of regenerative medicine. Here, we investigated whether implantation of fetal liver kinase-1 positive (Flk-1+) cells derived from iPS cells could improve angiogenesis in a mouse hind limb model of ischemia.ResultsFlk-1+ cells were induced from iPS cells after four to five days of culture. Hind limb ischemia was surgically induced and sorted Flk-1+ cells were directly injected into ischemic hind limbs of athymic nude mice. Revascularization of the ischemic hind limb was accelerated in mice that were transplanted with Flk-1+ cells compared with control mice, which were transplanted with vehicle, as evaluated by laser Doppler blood flowmetry. Transplantation of Flk-1+ cells also increased expression of VEGF mRNA in ischemic tissue compared to controls.ConclusionsDirect local implantation of iPS cell-derived Flk-1+ cells would salvage tissues from ischemia. These data indicate that iPS cells could be valuable in the therapeutic induction of angiogenesis.


Journal of Biological Chemistry | 2014

Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism

Masakazu Ishii; Rei Shibata; Kazuhisa Kondo; Takahiro Kambara; Yuuki Shimizu; Tohru Tanigawa; Yasuko Bando; Masahiro Nishimura; Noriyuki Ouchi; Toyoaki Murohara

Background: DPP-4 inhibitors exert pleiotropic effects that modulate cardiovascular disease. Results: The DPP-4 inhibitor vildagliptin stimulates ischemia-induced revascularization through eNOS signaling. The angiogenic actions of vildagliptin are mediated by both GLP-1-dependent and -independent mechanisms. Conclusion: DPP-4 inhibitor promotes endothelial cell function via eNOS signaling. Significance: DPP-4 inhibitor could be beneficial in patients with diabetes-related vascular complications. Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production.


Scientific Reports | 2013

iPS cell sheets created by a novel magnetite tissue engineering method for reparative angiogenesis

Tetsutaro Kito; Rei Shibata; Masakazu Ishii; Hirohiko Suzuki; Tatsuhito Himeno; Yoshiyuki Kataoka; Yumiko Yamamura; Takashi Yamamoto; Naomi Nishio; Sachiko Ito; Yasushi Numaguchi; Tohru Tanigawa; Jun Yamashita; Noriyuki Ouchi; Hiroyuki Honda; Ken-ichi Isobe; Toyoaki Murohara

Angiogenic cell therapy represents a novel strategy for ischemic diseases, but some patients show poor responses. We investigated the therapeutic potential of an induced pluripotent stem (iPS) cell sheet created by a novel magnetite tissue engineering technology (Mag-TE) for reparative angiogenesis. Mouse iPS cell-derived Flk-1+ cells were incubated with magnetic nanoparticle-containing liposomes (MCLs). MCL-labeled Flk-1+ cells were mixed with diluted extracellular matrix (ECM) precursor and a magnet was placed on the reverse side. Magnetized Flk-1+ cells formed multi-layered cell sheets according to magnetic force. Implantation of the Flk-1+ cell sheet accelerated revascularization of ischemic hindlimbs relative to the contralateral limbs in nude mice as measured by laser Doppler blood flow and capillary density analyses. The Flk-1+ cell sheet also increased the expressions of VEGF and bFGF in ischemic tissue. iPS cell-derived Flk-1+ cell sheets created by this novel Mag-TE method represent a promising new modality for therapeutic angiogenesis.


Heart Failure Reviews | 2008

New insights into the importance of aminopeptidase A in hypertension

Shigehiko Mizutani; Masakazu Ishii; Akira Hattori; Seiji Nomura; Yasushi Numaguchi; Masafumi Tsujimoto; Hiroshi Kobayshi; Toyoaki Murohara; John W. Wright

The renin-angiotensin system (RAS) plays an important role in the maintenance of normal blood pressure and the etiology of hypertension; however, minimal attention has been paid to the degradation of the effector peptide, angiotensin II (AngII). Since aminopeptidase A (APA)-deficient mice develop hypertension APA appears to be an essential enzyme in the control of blood pressure via degradation of AngII. The robust hypertension seen in the spontaneously hypertensive rat (SHR) is due to activation of the RAS, and an accompanying decrease in kidney APA. Changes in APA have also been measured during the activation of the RAS in the Goldblatt hypertension model and Dahl salt-sensitive (DSS) rat. The DSS rat shows an elevation in renal APA activity at the onset of hypertension suggesting a protective role against elevations in circulating AngII, followed by decreased APA activity with advancing hypertension. Changes seen in human maternal serum APA activity during preeclampsia are similar to changes measured in renal APA in the DSS rat model. APA activity is higher than during normal pregnancy at the onset of preeclampsia, and with advancing preeclampsia (severe preeclampsia) declines below that seen during normal pregnancy. Serum APA activity is also increased during hormone replacement therapy (HRT), perhaps in reaction to elevated levels of AngII. Thus, it appears important to consider the relationship among activation of the RAS, circulating levels of AngII, and the availability of APA in hypertensive disorders.

Collaboration


Dive into the Masakazu Ishii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge