Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masakazu Shiota is active.

Publication


Featured researches published by Masakazu Shiota.


Journal of Biological Chemistry | 1999

Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase.

Catherine Postic; Masakazu Shiota; Kevin D. Niswender; T. L. Jetton; Yeujin Chen; J. M. Moates; Kathy D. Shelton; Jill Lindner; Alan D. Cherrington; Mark A. Magnuson

Glucokinase (GK) gene mutations cause diabetes mellitus in both humans and mouse models, but the pathophysiological basis is only partially defined. We have used cre-loxPtechnology in combination with gene targeting to perform global, β cell-, and hepatocyte-specific gene knock-outs of this enzyme in mice. Gene targeting was used to create a triple-loxed gk allele, which was converted by partial or total Cre-mediated recombination to a conditional allele lacking neomycin resistance, or to a null allele, respectively. β cell- and hepatocyte-specific expression of Cre was achieved using transgenes that contain either insulin or albumin promoter/enhancer sequences. By intercrossing the transgenic mice that express Cre in a cell-specific manner with mice containing a conditional gk allele, we obtained animals with either a β cell or hepatocyte-specific knock-out of GK. Animals either globally deficient in GK, or lacking GK just in β cells, die within a few days of birth from severe diabetes. Mice that are heterozygous null for GK, either globally or just in the β cell, survive but are moderately hyperglycemic. Mice that lack GK only in the liver are only mildly hyperglycemic but display pronounced defects in both glycogen synthesis and glucose turnover rates during a hyperglycemic clamp. Interestingly, hepatic GK knock-out mice also have impaired insulin secretion in response to glucose. These studies indicate that deficiencies in both β cell and hepatic GK contribute to the hyperglycemia of MODY-2.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance

Julie R. Jones; Cordelia Barrick; Kyoung-Ah Kim; Jill Lindner; Bertrand Blondeau; Yuka Fujimoto; Masakazu Shiota; Robert A. Kesterson; Barbara B. Kahn; Mark A. Magnuson

Peroxisome proliferator-activated receptor γ (PPARγ) plays a crucial role in adipocyte differentiation, glucose metabolism, and other physiological processes. To further explore the role of PPARγ in adipose tissues, we used a Cre/loxP strategy to generate adipose-specific PPARγ knockout mice. These animals exhibited marked abnormalities in the formation and function of both brown and white adipose tissues. When fed a high-fat diet, adipose-specific PPARγ knockout mice displayed diminished weight gain despite hyperphagia, had diminished serum concentrations of both leptin and adiponectin, and did not develop glucose intolerance or insulin resistance. Characterization of in vivo glucose dynamics pointed to improved hepatic glucose metabolism as the basis for preventing high-fat diet-induced insulin resistance. Our findings further illustrate the essential role for PPARγ in the development of adipose tissues and suggest that a compensatory induction of hepatic PPARγ may stimulate an increase in glucose disposal by the liver.


Journal of Biological Chemistry | 2002

Reduction in Pancreatic Transcription Factor PDX-1 Impairs Glucose-stimulated Insulin Secretion

Marcela Brissova; Masakazu Shiota; Wendell E. Nicholson; Maureen Gannon; Susan M. Knobel; David W. Piston; Christopher V.E. Wright; Alvin C. Powers

Complete lack of transcription factor PDX-1 leads to pancreatic agenesis, whereas heterozygosity for PDX-1 mutations has been recently noted in some individuals with maturity-onset diabetes of the young (MODY) and in some individuals with type 2 diabetes. To determine how alterations in PDX-1 affect islet function, we examined insulin secretion and islet physiology in mice with one PDX-1 allele inactivated. PDX-1+/− mice had a normal fasting blood glucose and pancreatic insulin content but had impaired glucose tolerance and secreted less insulin during glucose tolerance testing. The expression of PDX-1 and glucose transporter 2 in islets from PDX-1+/−mice was reduced to 68 and 55%, respectively, whereas glucokinase expression was not significantly altered. NAD(P)H generation in response to glucose was reduced by 30% in PDX-1+/− mice. The in situ perfused pancreas of PDX-1+/− mice secreted about 45% less insulin when stimulated with 16.7 mm glucose. The Km for insulin release was similar in wild type and PDX-1+/− mice. Insulin secretion in response to 20 mm arginine was unchanged; the response to 10 nm glucagon-like peptide-1 was slightly increased. However, insulin secretory responses to 10 mm 2-ketoisocaproate and 20 mm KCl were significantly reduced (by 61 and 66%, respectively). These results indicate that a modest reduction in PDX-1 impairs several events in glucose-stimulated insulin secretion (such as NAD(P)H generation, mitochondrial function, and/or mobilization of intracellular Ca2+) and that PDX-1 is important for normal function of adult pancreatic islets.


Diabetes | 2006

Pancreatic Islet Production of Vascular Endothelial Growth Factor-A Is Essential for Islet Vascularization, Revascularization, and Function

Marcela Brissova; Alena Shostak; Masakazu Shiota; Peter O. Wiebe; Greg Poffenberger; Jeannelle Kantz; Zhongyi Chen; Chad Carr; W. Gray Jerome; Jin Chen; H. Scott Baldwin; Wendell E. Nicholson; David M. Bader; Thomas L. Jetton; Maureen Gannon; Alvin C. Powers

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and β-cell mass, mice with β-cell–reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of β-cell secretagogues to islets, we showed that reduced insulin output is not a result of β-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.


Science | 2006

Neuronal Pathway from the Liver Modulates Energy Expenditure and Systemic Insulin Sensitivity

Kenji Uno; Hideki Katagiri; Tetsuya Yamada; Yasushi Ishigaki; Takehide Ogihara; Junta Imai; Yutaka Hasegawa; Junhong Gao; Keizo Kaneko; Hiroko Iwasaki; Hisamitsu Ishihara; Hironobu Sasano; Kouichi Inukai; Hiroyuki Mizuguchi; Tomoichiro Asano; Masakazu Shiota; Masamitsu Nakazato; Yoshitomo Oka

Coordinated control of energy metabolism and glucose homeostasis requires communication between organs and tissues. We identified a neuronal pathway that participates in the cross talk between the liver and adipose tissue. By studying a mouse model, we showed that adenovirus-mediated expression of peroxisome proliferator–activated receptor (PPAR)–g2 in the liver induces acute hepatic steatosis while markedly decreasing peripheral adiposity. These changes were accompanied by increased energy expenditure and improved systemic insulin sensitivity. Hepatic vagotomy and selective afferent blockage of the hepatic vagus revealed that the effects on peripheral tissues involve the afferent vagal nerve. Furthermore, an antidiabetic thiazolidinedione, a PPARg agonist, enhanced this pathway. This neuronal pathway from the liver may function to protect against metabolic perturbation induced by excessive energy storage.


Journal of Biological Chemistry | 2002

Sulfonylurea Receptor Type 1 Knock-out Mice Have Intact Feeding-stimulated Insulin Secretion despite Marked Impairment in Their Response to Glucose

Chiyo Shiota; Olof Larsson; Kathy D. Shelton; Masakazu Shiota; Alexander M. Efanov; Marianne Høy; Jill Lindner; Suwattanee Kooptiwut; Lisa Juntti-Berggren; Jesper Gromada; Per-Olof Berggren; Mark A. Magnuson

The ATP-sensitive potassium channel is a key molecular complex for glucose-stimulated insulin secretion in pancreatic β cells. In humans, mutations in either of the two subunits for this channel, the sulfonylurea type 1 receptor (Sur1) or Kir6.2, cause persistent hyperinsulinemic hypoglycemia of infancy. We have generated and characterized Sur1 null mice. Interestingly, these animals remain euglycemic for a large portion of their life despite constant depolarization of membrane, elevated cytoplasmic free Ca2+ concentrations, and intact sensitivity of the exocytotic machinery to Ca2+. A comparison of glucose- and meal-stimulated insulin secretion showed that, although Sur1 null mice do not secrete insulin in response to glucose, they secrete nearly normal amounts of insulin in response to feeding. Because Sur1 null mice lack an insulin secretory response to GLP-1, even though their islets exhibit a normal rise in cAMP by GLP-1, we tested their response to cholinergic stimulation. We found that perfused Sur1 null pancreata secreted insulin in response to the cholinergic agonist carbachol in a glucose-dependent manner. Together, these findings suggest that cholinergic stimulation is one of the mechanisms that compensate for the severely impaired response to glucose and GLP-1 brought on by the absence of Sur1, thereby allowing euglycemia to be maintained.


Molecular and Cellular Biology | 2000

Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism

Pengxiang She; Masakazu Shiota; Kathy D. Shelton; Roger Chalkley; Catherine Postic; Mark A. Magnuson

ABSTRACT We used an allelogenic Cre/loxP gene targeting strategy in mice to determine the role of cytosolic phosphoenolpyruvate carboxykinase (PEPCK) in hepatic energy metabolism. Mice that lack this enzyme die within 3 days of birth, while mice with at least a 90% global reduction of PEPCK, or a liver-specific knockout of PEPCK, are viable. Surprisingly, in both cases these animals remain euglycemic after a 24-h fast. However, mice without hepatic PEPCK develop hepatic steatosis after fasting despite up-regulation of a variety of genes encoding free fatty acid-oxidizing enzymes. Also, marked alterations in the expression of hepatic genes involved in energy metabolism occur in the absence of any changes in plasma hormone concentrations. Given that a ninefold elevation of the hepatic malate concentration occurs in the liver-specific PEPCK knockout mice, we suggest that one or more intermediary metabolites may directly regulate expression of the affected genes. Thus, hepatic PEPCK may function more as an integrator of hepatic energy metabolism than as a determinant of gluconeogenesis.


Journal of Biological Chemistry | 1997

Effects of Increased Glucokinase Gene Copy Number on Glucose Homeostasis and Hepatic Glucose Metabolism

Kevin D. Niswender; Masakazu Shiota; Catherine Postic; Alan D. Cherrington; Mark A. Magnuson

The relationship between glucokinase (GK) gene copy number and glucose homeostasis was studied in transgenic mice with additional copies of the entire GK gene locus (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem.272, 22564–22569). The plasma glucose concentration was reduced by 25 ± 3% and 37 ± 4% in mice with one or two extra copies of the gene locus, respectively. The basis for the hypoglycemic phenotype was determined using metabolic tracer techniques in chronically cannulated, conscious mice with one extra GK gene copy. Under basal conditions (6-h fasted) transgenic mice had a lower blood glucose concentration (−12 ± 1%) and a slightly higher glucose turnover rate (+8 ± 3%), resulting in a significantly higher glucose clearance rate (+21 ± 2%). Plasma insulin levels were not different, suggesting that increased glucose clearance was due to augmented hepatic, not islet, GK gene expression. Under hyperglycemic clamp conditions the transgenic mice had glucose turnover and clearance rates similar to the controls, but showed a lower plasma insulin response (−48 ± 5%). Net hepatic glycogen synthesis was markedly elevated (+360%), whereas skeletal muscle glycogen synthesis was decreased (−40%). These results indicate that increased GK gene dosage leads to increased hepatic glucose metabolism and, consequently, a lower plasma glucose concentration. Increased insulin secretion was not observed, even though the transgene is expressed in islets, because hypoglycemia causes a down-regulation in islet GK content (Niswender, K. D., Postic, C., Jetton, T. L., Bennett, B. D., Piston, D. W., Efrat, S., and Magnuson, M. A. (1997) J. Biol. Chem. 272, in press).


Molecular and Cellular Neuroscience | 1999

Mice lacking alpha-calcitonin gene-related peptide exhibit normal cardiovascular regulation and neuromuscular development.

Jonathan T. Lu; Young-Jin Son; Jongho Lee; Thomas L. Jetton; Masakazu Shiota; Lisa M. Moscoso; Kevin D. Niswender; Arthur D. Loewy; Mark A. Magnuson; Joshua R. Sanes; Ronald B. Emeson

alpha-Calcitonin gene-related peptide (alphaCGRP) is a pleiotropic peptide neuromodulator that is widely expressed throughout the Central and peripheral nervous systems. CGRP has been implicated in a variety of physiological processes including peripheral vasodilation, cardiac acceleration nicotinic acetylcholine receptor (AChR) synthesis and function, testicular descent, nociception, carbohydrate metabolism, gastrointestinal motility, neurogenic inflammation, and gastric acid secretion. To provide a better understanding of the physiological role(s) mediated by this peptide neurotransmitter, we have generated alphaCGRP-null mice by targeted modification in embryonic stem cells. Mice lacking alpha CGRP expression demonstrate no obvious phenotypic differences from their wild-type littermates. Detailed analysis of systemic cardiovascular function revealed no differences between control and mutant mice regarding heart rate and blood pressure under basal or exercise-induced conditions and subsequent to pharmacological manipulation. Characterization of neuromuscular junction in morphology including nicotinic receptor localization, terminal sprouting in response to denervation, developmental regulation of AChR subunit expression, and synapse elimination also revealed no differences in alphaCGRP-deficient animals. These results suggest that alphaCGRP is not required for the systemic regulation of cardiovascular hemodynamics or development of the neuromuscular junction.


Transplantation | 2005

Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging.

Michael J. Fowler; John Virostko; Zhongyi Chen; Greg Poffenberger; Aramandla Radhika; Marcela Brissova; Masakazu Shiota; Wendell E. Nicholson; Yubin Shi; Boaz Hirshberg; David M. Harlan; E. Duco Jansen; Alvin C. Powers

Background. Pancreatic islet transplantation is an emerging therapy for type 1 diabetes, but it is difficult to assess islets after transplantation and thus to design interventions to improve islet survival. Methods. To image and quantify islets, the authors transplanted luciferase-expressing murine or human islets (by adenovirus-mediated gene transfer) into the liver or beneath the renal capsule of immunodeficient mice and quantified the in vivo bioluminescence imaging (BLI) of mice using a cooled charge-coupled device camera and digital photon-counting image analysis. To account for variables that are independent of islet mass such as transplant site, animal positioning, and wound healing, the BLI of transplanted islets was calibrated against measurement of luminescence of an implanted bead emitting a constant light intensity. Results. BLI of mice bearing islet transplants was seen in the expected anatomic location, was stable for more than 8 weeks after transplantation, and correlated with the number of islets transplanted into the liver or kidney. BLI of the luminescent bead and of transplanted islets in the kidney was approximately four times greater than when transplanted in the liver, indicating that photon emission is dependent on optical absorption of generated light and thus light source location. Conclusion. In vivo BLI allows for quantitative, serial measurements of pancreatic islet mass after transplantation and should be useful in assessing interventions to sustain or increase islet survival of transplanted islets.

Collaboration


Dive into the Masakazu Shiota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuaki Moriyama

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvin C. Powers

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcela Brissova

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge