Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaki Inagaki is active.

Publication


Featured researches published by Masaki Inagaki.


Journal of Biological Chemistry | 1999

IDENTIFICATION OF A NOVEL PHOSPHORYLATION SITE ON HISTONE H3 COUPLED WITH MITOTIC CHROMOSOME CONDENSATION

Hidemasa Goto; Yasuko Tomono; Kozo Ajiro; Hidetaka Kosako; Masatoshi Fujita; Minoru Sakurai; Katsuya Okawa; Akihiro Iwamatsu; Tohru Okigaki; Toshitada Takahashi; Masaki Inagaki

Histone H3 (H3) phosphorylation at Ser10 occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation inTetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr7, we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate. With microsequencing, this phosphoprotein was proved to be H3. Mutational analysis revealed that they recognized H3 Ser28phosphorylation. Then we produced a monoclonal antibody, HTA28, using a phosphopeptide corresponding to phosphorylated H3 Ser28. This antibody specifically recognized the phosphorylation of H3 Ser28 but not that of glial fibrillary acidic protein Thr7. Immunocytochemical studies with HTA28 revealed that Ser28 phosphorylation occurred in chromosomes predominantly during early mitosis and coincided with the initiation of mitotic chromosome condensation. Biochemical analyses using32P-labeled mitotic cells also confirmed that H3 is phosphorylated at Ser28 during early mitosis. In addition, we found that H3 is phosphorylated at Ser28 as well as Ser10 when premature chromosome condensation was induced in tsBN2 cells. These observations suggest that H3 phosphorylation at Ser28, together with Ser10, is a conserved event and is likely to be involved in mitotic chromosome condensation.


Genes to Cells | 2002

Aurora-B phosphorylates Histone H3 at serine28 with regard to the mitotic chromosome condensation.

Hidemasa Goto; Yoshihiro Yasui; Erich A. Nigg; Masaki Inagaki

Background:  Histone H3 (H3) phosphorylation plays important roles in mitotic chromosome condensation. We reported that H3 phosphorylation occurs at Ser28, as well as at Ser10 during mitosis, at least in mammals. Aurora B was recently demonstrated to be responsible for Ser10 phosphorylation in S. cerevisiae, C. elegans, Drosophila and Xenopus egg extract.


Developmental Cell | 2003

Phosphorylation by Aurora B Converts MgcRacGAP to a RhoGAP during Cytokinesis

Yukinori Minoshima; Toshiyuki Kawashima; Koichi Hirose; Yukio Tonozuka; Aie Kawajiri; Ying Chun Bao; Xingming Deng; Masaaki Tatsuka; Shuh Narumiya; W.Stratford May; Tetsuya Nosaka; Kentaro Semba; Takafumi Inoue; Takaya Satoh; Masaki Inagaki; Toshio Kitamura

Cell division is finely controlled by various molecules including small G proteins and kinases/phosphatases. Among these, Aurora B, RhoA, and the GAP MgcRacGAP have been implicated in cytokinesis, but their underlying mechanisms of action have remained unclear. Here, we show that MgcRacGAP colocalizes with Aurora B and RhoA, but not Rac1/Cdc42, at the midbody. We also report that Aurora B phosphorylates MgcRacGAP on serine residues and that this modification induces latent GAP activity toward RhoA in vitro. Expression of a kinase-defective mutant of Aurora B disrupts cytokinesis and inhibits phosphorylation of MgcRacGAP at Ser387, but not its localization to the midbody. Overexpression of a phosphorylation-deficient MgcRacGAP-S387A mutant, but not phosphorylation-mimic MgcRacGAP-S387D mutant, arrests cytokinesis at a late stage and induces polyploidy. Together, these findings indicate that during cytokinesis, MgcRacGAP, previously known as a GAP for Rac/Cdc42, is functionally converted to a RhoGAP through phosphorylation by Aurora B.


The EMBO Journal | 2005

PKCε‐mediated phosphorylation of vimentin controls integrin recycling and motility

Johanna Ivaska; Karoliina Vuoriluoto; Tuomas Huovinen; Ichiro Izawa; Masaki Inagaki; Peter J. Parker

PKCε controls the transport of endocytosed β1‐integrins to the plasma membrane regulating directional cell motility. Vimentin, an intermediate filament protein upregulated upon epithelial cell transformation, is shown here to be a proximal PKCε target within the recycling integrin compartment. On inhibition of PKC and vimentin phosphorylation, integrins become trapped in vesicles and directional cell motility towards matrix is severely attenuated. In vitro reconstitution assays showed that PKCε dissociates from integrin containing endocytic vesicles in a selectively phosphorylated vimentin containing complex. Mutagenesis of PKC (controlled) sites on vimentin and ectopic expression of the variant leads to the accumulation of intracellular PKCε/integrin positive vesicles. Finally, introduction of ectopic wild‐type vimentin is shown to promote cell motility in a PKCε‐dependent manner; alanine substitutions in PKC (controlled) sites on vimentin abolishes the ability of vimentin to induce cell migration, whereas the substitution of these sites with acidic residues enables vimentin to rescue motility of PKCε null cells. Our results indicate that PKC‐mediated phosphorylation of vimentin is a key process in integrin traffic through the cell.


Oncogene | 2000

Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow.

Hidetaka Kosako; Toshimichi Yoshida; Fumio Matsumura; Toshimasa Ishizaki; Shuh Narumiya; Masaki Inagaki

The small GTPase Rho and one of its targets, Rho-kinase (also termed ROK or ROCK), are implicated in various cellular functions including stress fiber formation, smooth muscle contraction, tumor cell invasion and cell motility. We have previously reported that Rho-kinase accumulates at the cleavage furrow during cytokinesis in several cultured cells. Here, using Rho-kinase inhibitors, Y-27632 and HA1077, we found that Rho-kinase is responsible for the phosphorylation of myosin regulatory light chain at Ser19 in the cleavage furrow during cytokinesis. On the other hand, phosphorylation of ezrin/radixin/moesin (ERM) proteins at the cleavage furrow was enhanced by the addition of the above Rho-kinase inhibitors. Treatment with Y-27632 strongly enhanced the accumulation of Rho-kinase but not RhoA and citron kinase at the cleavage furrow. Furthermore, the furrow ingression in cytokinesis was significantly prolonged in the presence of Y-27632. These results suggest that Rho-kinase is involved in the progression of cytokinesis through the phosphorylation of several proteins including myosin light chain at the cleavage furrow.


Molecular and Cellular Biology | 2005

Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones

Nariko Arimura; Céline Ménager; Yoji Kawano; Takeshi Yoshimura; Saeko Kawabata; Atsushi Hattori; Yuko Fukata; Mutsuki Amano; Yoshio Goshima; Masaki Inagaki; Nobuhiro Morone; Jiro Usukura; Kozo Kaibuchi

ABSTRACT Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.


Journal of Biological Chemistry | 2004

Autophosphorylation of a newly identified site of Aurora-B is indispensable for cytokinesis.

Yoshihiro Yasui; Takeshi Urano; Aie Kawajiri; Koh-ichi Nagata; Masaaki Tatsuka; Hideyuki Saya; Koichi Furukawa; Toshitada Takahashi; Ichiro Izawa; Masaki Inagaki

Mitotic kinases regulate cell division and its checkpoints, errors of which can lead to aneuploidy or genetic instability. One of these is Aurora-B, a key kinase that is required for chromosome alignment at the metaphase plate and for cytokinesis in mammalian cells. We report here that human Aurora-B is phosphorylated at Thr-232 through interaction with the inner centromere protein (INCENP) in vivo. The phosphorylation of Thr-232 occurs by means of an autophosphorylation mechanism, which is indispensable for the Aurora-B kinase activity. The activation of Aurora-B spatio-temporally correlated with the site-specific phosphorylation of its physiological substrates, histone H3 and vimentin. Overexpression of the TA mutant of Aurora-B, in which Thr-232 was changed into alanine, frequently induced multinuclearity in cells. These results indicate that the phosphorylation of Thr-232 is an essential regulatory mechanism for Aurora-B activation.


Journal of Cell Biology | 2001

Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD

Hiroyasu Inada; Ichiro Izawa; Miwako Nishizawa; Eriko Fujita; Tohru Kiyono; Toshitada Takahashi; Takashi Momoi; Masaki Inagaki

Keratin 8 and 18 (K8/18) are the major components of intermediate filament (IF) proteins of simple or single-layered epithelia. Recent data show that normal and malignant epithelial cells deficient in K8/18 are nearly 100 times more sensitive to tumor necrosis factor (TNF)–induced cell death. We have now identified human TNF receptor type 1 (TNFR1)–associated death domain protein (TRADD) to be the K18-interacting protein. Among IF proteins tested in two-hybrid systems, TRADD specifically bound K18 and K14, type I (acidic) keratins. The COOH-terminal region of TRADD interacted with the coil Ia of the rod domain of K18. Endogenous TRADD coimmunoprecipitated with K18, and colocalized with K8/18 filaments in human mammary epithelial cells. Overexpression of the NH2 terminus (amino acids 1–270) of K18 containing the TRADD-binding domain as well as overexpression of K8/18 in SW13 cells, which are devoid of keratins, rendered the cells more resistant to killing by TNF. We also showed that overexpressed NH2 termini of K18 and K8/18 were associated with endogenous TRADD in SW13 cells, resulting in the inhibition of caspase-8 activation. These results indicate that K18 may sequester TRADD to attenuate interactions between TRADD and activated TNFR1 and moderate TNF-induced apoptosis in simple epithelial cells.


Journal of Biological Chemistry | 2003

Filament Formation of MSF-A, a Mammalian Septin, in Human Mammary Epithelial Cells Depends on Interactions with Microtubules

Koh-ichi Nagata; Aie Kawajiri; Seiya Matsui; Mihoko Takagishi; Takashi Shiromizu; Noriko Saitoh; Ichiro Izawa; Tohru Kiyono; Tomohiko J. Itoh; Hirokazu Hotani; Masaki Inagaki

Septins are a family of conserved proteins implicated in a variety of cellular functions such as cytokinesis and vesicle trafficking, but their properties and modes of action are largely unknown. Here we now report findings of immunocytochemical and biochemical characterization of a mammalian septin, MSF-A. Using an antibody specific for MSF subfamily proteins, MSF-A was found to be expressed predominantly in mammary human mammary epithelial cells (HMEC). MSF-A was associated with microtubules in interphase HMEC cells as it localized with the mitotic spindle and the bundle of microtubule at midzone during mitosis. Biochemical analysis revealed direct binding of MSF-A with polymerized tubulin through its central region containing guanine nucleotide-interactive motifs. GTPase activity, however, was not required for the association. Conditions that disrupt the microtubule network also disrupted the MSF-A-containing filament structure, resulting in a punctate cytoplasmic pattern. Depletion of MSF-A using small interfering RNAs caused incomplete cell division and resulted in the accumulation of binucleated cells. Unlike Nedd5, an MSF mutant deficient in GTPase activity forms filament indistinguishable from that of the wild type in COS cells. These results strongly suggest that septin filaments may interact not only with actin filaments but also with microtubule networks and that GTPase activity of MSF-A is not indispensable to incorporation of MSF-A into septin filaments.


Nature Cell Biology | 2006

Complex formation of Plk1 and INCENP required for metaphase-anaphase transition

Hidemasa Goto; Tohru Kiyono; Yasuko Tomono; Aie Kawajiri; Takeshi Urano; Koichi Furukawa; Erich A. Nigg; Masaki Inagaki

Mitotic chromosomal dynamics is regulated by the coordinated activities of many mitotic kinases, such as cyclin-dependent kinase 1 (Cdk1), Aurora-B or Polo-like kinase 1 (Plk1), but the mechanisms of their coordination remain unknown. Here, we report that Cdk1 phosphorylates Thr 59 and Thr 388 on inner centromere protein (INCENP), which regulates the localization and kinase activity of Aurora-B from prophase to metaphase. INCENP depletion disrupts Plk1 localization specifically at the kinetochore. This phenotype is rescued by the exogenous expression of INCENP wild type and INCENP mutated at Thr 59 to Ala (T59A), but not at Thr 388 to Ala (T388A). The replacement of endogenous INCENP with T388A resulted in the delay of progression from metaphase to anaphase. We propose that INCENP phosphorylation by Cdk1 is necessary for the recruitment of Plk1 to the kinetochore, and that the complex formation of Plk1 and Aurora-B on INCENP may play crucial roles in the regulation of chromosomal dynamics.

Collaboration


Dive into the Masaki Inagaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naoyuki Inagaki

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koh-ichi Nagata

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge