Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaki Nakahata is active.

Publication


Featured researches published by Masaki Nakahata.


Nature Communications | 2011

Redox-responsive self-healing materials formed from host–guest polymers

Masaki Nakahata; Yoshinori Takashima; Hiroyasu Yamaguchi; Akira Harada

Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host–guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol−gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces.


Accounts of Chemical Research | 2014

Supramolecular polymeric materials via cyclodextrin-guest interactions.

Akira Harada; Yoshinori Takashima; Masaki Nakahata

CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for creating materials that were self-healing or could serve as artificial muscle. Furthermore, we developed another self-healing material with CD inclusion complexes that showed selective self-healing properties after its surface was cut. These CD self-healing materials do not include chemical cross-linkers; instead the inclusion complex of CDs with guest molecules stabilized the materials strength. However, by introducing chemical cross-linkers into the hydrogels, we produced materials that could expand and contract. The chemical cross-linked hydrogels with responsive groups bent in response to external stimuli, and the cross-linkers controlled the ratio of inclusion complexes. Furthermore, we used the molecular recognition of CDs to achieve macroscopic self-assemblies, and this chemistry can direct these macroscopic objects into even larger aggregated structures. As we have demonstrated, reversible host-guest interactions have tremendous potential for the creation of a wide variety of functional materials.


Nature Communications | 2012

Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions

Yoshinori Takashima; Shogo Hatanaka; Miyuki Otsubo; Masaki Nakahata; Takahiro Kakuta; Akihito Hashidzume; Hiroyasu Yamaguchi; Akira Harada

The development of stimulus-responsive polymeric materials is of great importance, especially for the development of remotely manipulated materials not in direct contact with an actuator. Here we design a photoresponsive supramolecular actuator by integrating host–guest interactions and photoswitching ability in a hydrogel. A photoresponsive supramolecular hydrogel with α-cyclodextrin as a host molecule and an azobenzene derivative as a photoresponsive guest molecule exhibits reversible macroscopic deformations in both size and shape when irradiated by ultraviolet light at 365 nm or visible light at 430 nm. The deformation of the supramolecular hydrogel depends on the incident direction. The selectivity of the incident direction allows plate-shaped hydrogels to bend in water. Irradiating with visible light immediately restores the deformed hydrogel. A light-driven supramolecular actuator with α-cyclodextrin and azobenzene stems from the formation and dissociation of an inclusion complex by ultraviolet or visible light irradiation.


Advanced Materials | 2013

Preorganized Hydrogel: Self‐Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest‐Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups

Takahiro Kakuta; Yoshinori Takashima; Masaki Nakahata; Miyuki Otsubo; Hiroyasu Yamaguchi; Akira Harada

Supramolecular hydrogels formed by a host-guest interaction show self-healing properties. The cube-shaped hydrogels with β-cyclodextrin and adamantane guest molecules mend after being broken. The hydrogels sufficiently heal to form a single gel, and the initial strength is restored. Although contact between a freshly cut and uncut surface does not mend the gels, two freshly cut surfaces selectively mend.


Angewandte Chemie | 2015

Self-Healing, Expansion–Contraction, and Shape-Memory Properties of a Preorganized Supramolecular Hydrogel through Host–Guest Interactions†

Kohei Miyamae; Masaki Nakahata; Yoshinori Takashima; Akira Harada

Supramolecular materials cross-linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross-linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host-guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host-guest inclusion complexes of β-cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD-Ad-Fc gel). The βCD-Ad-Fc gel showed self-healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD-Ad-Fc gel showed a redox-responsive shape-morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.


Angewandte Chemie | 2013

Redox‐Generated Mechanical Motion of a Supramolecular Polymeric Actuator Based on Host–Guest Interactions

Masaki Nakahata; Yoshinori Takashima; Akihito Hashidzume; Akira Harada

The development of actuators based onmaterials that reversibly change their shape in response toexternalstimulishouldhelpimprovepeoplesqualityoflifeinsuch areas as medical treatment and micromachine applica-tion. Recently, stimuli-responsive materials have beenreported to create artificial muscles and actuators.


Angewandte Chemie | 2014

Redox‐Responsive Macroscopic Gel Assembly Based on Discrete Dual Interactions

Masaki Nakahata; Yoshinori Takashima; Akira Harada

The macroscopic self-assembly of polymeric hydrogels modified with β-cyclodextrin (βCD gel), ferrocene (Fc gel), and styrenesulfonic acid sodium salt (SSNa gel) was investigated. Under reductive conditions, the Fc gel selectively adhered to the βCD gel through a host-guest interaction. On the other hand, the oxidized ferrocenium (Fc(+)) gel selectively adhered to the SSNa gel through an ionic interaction under oxidative conditions. The adhesion strength was estimated by a tensile test. We finally succeeded in forming an ABC-type macroscopic assembly of all three gels through two discrete noncovalent interactions.


Macromolecular Rapid Communications | 2016

Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host–Guest Interaction

Masaki Nakahata; Yoshinori Takashima; Akira Harada

Flexible, tough, and self-healable polymeric materials are promising to be a solution to the energy problem by substituting for conventional heavy materials. A fusion of supramolecular chemistry and polymer chemistry is a powerful method to create such intelligent materials. Here, a supramolecular polymeric material using multipoint molecular recognition between cyclodextrin (CD) and hydrophobic guest molecules at polymer side chain is reported. A transparent, flexible, and tough hydrogel (host-guest gel) is formed by a simple preparation procedure. The host-guest gel shows self-healing property in both wet state and dry state due to reversible nature of host-guest interaction. The practical utility of the host-guest gel as a scratch curable coating is demonstrated.


Macromolecular Rapid Communications | 2014

Supramolecular Adhesives to Hard Surfaces: Adhesion Between Host Hydrogels and Guest Glass Substrates Through Molecular Recognition

Yoshinori Takashima; Taiga Sahara; Tomoko Sekine; Takahiro Kakuta; Masaki Nakahata; Miyuki Otsubo; Yuichiro Kobayashi; Akira Harada

Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.


Chemistry: A European Journal | 2015

Macroscopic Self-Assembly Based on Complementary Interactions between Nucleobase Pairs

Masaki Nakahata; Yoshinori Takashima; Akihito Hashidzume; Akira Harada

We have created a selective macroscopic self-assembly process by using polymer gels modified with complementary DNA oligonucleotides or nucleobases. The hydrogels modified with complementary DNA oligonucleotides adhered to each other by simple contact. The organogels modified with complementary nucleobases selectively formed macroscopic assemblies by agitation in nonpolar organic solvents. The adhesion strength of each gel was estimated semi-quantitatively by stress-strain measurements. We achieved direct adhesion between macroscopic materials both in water and in organic media, based on complementary hydrogen bonds.

Collaboration


Dive into the Masaki Nakahata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge