Masaki Nambu
National Defense Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masaki Nambu.
Annals of Plastic Surgery | 2009
Masaki Nambu; Satoko Kishimoto; Shingo Nakamura; Hiroshi Mizuno; Satoshi Yanagibayashi; Naoto Yamamoto; Ryuichi Azuma; Shin-ichiro Nakamura; Tomoharu Kiyosawa; Masayuki Ishihara; Yasuhiro Kanatani
Adipose tissue-derived stromal cells (ATSCs) have recently gained widespread attention as a potential alternate source to bone marrow–derived mesenchymal stem cells with a proliferative capacity and a similar ability to undergo multilineage differentiation. In this study, we evaluated the effectiveness of freshly isolated autologous ATSCs-containing atelocollagen matrix with silicon membrane (ACMS) on wound healing of diabetic (db/db) mice. Cultured ATSCs from (db/db) mice secreted significant amounts of growth factors and cytokines, which are suitable for wound repair. Two full thickness round skin defects were made on the backs of healing-impaired db/db mice. Freshly isolated autologous ATSCs-containing ACMS or ACMS alone were applied to the wounds. Twelve mice were treated and then killed at 1 or 2 weeks (n = 6 each). Histologic sections of the wounds were prepared at each time period after treatment. Histologic examination demonstrated significantly advanced granulation tissue formation, capillary formation, and epithelialization in diabetic healing-impaired wounds treated with autologous ATSCs-containing ACMS, compared with mice treated with ACMS alone. These results suggested that transplantation of autologous ATSCs-containing ACMS significantly accelerated wound healing in diabetic healing-impaired db/db mice.
Wound Repair and Regeneration | 2007
Masaki Nambu; Masayuki Ishihara; Shingo Nakamura; Hiroshi Mizuno; Satoshi Yanagibayashi; Yasuhiro Kanatani; Hidemi Hattori; Bonpei Takase; Takamitsu Ishizuka; Satoko Kishimoto; Yoshiko Amano; Naoto Yamamoto; Ryuichi Azuma; Tomoharu Kiyosawa
The aim of this study was to evaluate the potential accelerating effects of an adipose tissue‐derived stromal cells (ATSC)‐containing atelocollagen matrix with silicone membrane (ACMS) for repairing mitomycin C‐treated healing‐impaired wounds. Mitomycin C was applied to full‐thickness skin incisions in this study to create a healing‐impaired wound model in rat. After thoroughly washing out the mitomycin C from the wound, ACMS alone or ATSC‐containing ACMS was applied to the wounds. Histological sections of the wounds were then prepared at indicated time periods after the treatments. These results indicated significantly advanced granulation tissue and capillary formations in the healing‐impaired wounds treated with ATSC‐containing ACMS compared with those treated with ACMS alone. Thus, this study suggested that transplantation of inbred ATSC‐containing ACMS is effective for repairing healing‐impaired wounds.
Plastic and Reconstructive Surgery | 2008
Ryuichi Azuma; Yuji Morimoto; Kazuma Masumoto; Masaki Nambu; Megumi Takikawa; Satoshi Yanagibayashi; Naoto Yamamoto; Makoto Kikuchi; Tomoharu Kiyosawa
Perforator-based island flaps are widely used to reconstruct skin defects. For this procedure to succeed, a perforator with adequate blood flow must be selected, and precise preoperative prediction of the location of the perforators is required. To identify perforators, a variety of methods have bee
Current Drug Delivery | 2006
Masayuki Ishihara; Masanori Fujita; Kiyohaya Obara; Hidemi Hattori; Shingo Nakamura; Masaki Nambu; Tomoharu Kiyosawa; Yasuhiro Kanatani; Bonpei Takase; Makoto Kikuchi; Tadaaki Maehara
A photocrosslinkable chitosan (Az-CH-LA) aqueous solution resulted in an insoluble hydrogel like a soft rubber within 30 sec of ultraviolet light (UV)-irradiation. The photocrosslinked chitosan hydrogel showed strong sealing strength and potential use as a new tissue adhesive in surgical application. Paclitaxel, which is an anti-tumor reagent and a vascularization-inhibitor, retained in the photocrosslinked chitosan hydrogel, and were gradually released from the photocrosslinked chitosan hydrogel in vivo upon the degradation of the hydrogel. The paclitaxel-incorporated photocrosslinked chitosan hydrogels effectively inhibited tumor growth and angiogenesis in mice. On the other hand, the fibroblast growth factor (FGF)-2 molecules also retained in both the photocrosslinked chitosan and an injectable chitosan/IO(4)-heparin hydrogels, and were gradually released from the hydrogels upon their in vivo biodegradations. The activity of FGF-2 in the hydrogels was stable for long time (more than 14 days). The controlled release of biologically active FGF-2 molecules from the hydrogels caused an induction of the angiogenesis and, possibly, collateral circulation occurred in the healing-impaired diabetic (db/db) mice and the ischemic limbs of rats. The purpose of this review is to describe the effectiveness of the chitosan hydrogels (photocrosslinkable chitosan hydrogel and chitosan/IO(4)-heparin hydrogel) as a local drug delivery carrier for FGF-2 and paclitaxel to control wound repair, tumor growth, and angiogenesis. It is thus proposed that the chitosan hydrogels may be a promising new local carrier for drugs such as FGF-2 and paclitaxel.
Journal of Biomedical Materials Research Part B | 2011
Megumi Takikawa; Shin-ichiro Nakamura; Shingo Nakamura; Masaki Nambu; Masayuki Ishihara; Masanori Fujita; Satoko Kishimoto; Takashi Doumoto; Satoshi Yanagibayashi; Ryuichi Azuma; Naoto Yamamoto; Tomoharu Kiyosawa
The purpose of this study was to evaluate effects of human platelet-rich plasma (PRP)-containing fragmin/protamine microparticles (F/P MPs) as a protein carrier on neovascularization and granulation tissue formation. Frozen and thawed PRP contains high concentrations of various growth factors (GFs) and F/P MPs effectively adsorb those GFs. Human microvascular endothelial cells (MVECs) and dermal fibroblast cells (DFCs) were optimally grown in medium containing 4% PRP and the addition of F/P MPs significantly maintained and protected the proliferative activity of PRP incubated at 37°C for more than 10 days. When PRP-containing F/P MPs were subcutaneously injected into the back of mice, significant neovascularization was induced near the injected site with enhanced filtration of inflammatory cells from day 3 to day 30, compared with controls (injections of PRP, F/P MPs, and saline). Both PRP-containing F/P MPs and PRP alone induced significant formation of granulation tissue at the injected site. However, thickness of induced granulation tissues was well maintained for 30 days only in PRP-containing F/P MP-injected group. Those bound GFs may be gradually diffused and released from F/P MPs in vitro and in vivo. Thereby, PRP-containing F/P MPs offer significantly higher inductions of vascularization and fibrous tissue formation in vivo than PRP alone.
Journal of Biomedical Materials Research Part A | 2009
Shingo Nakamura; Satoko Kishimoto; Shin-ichiro Nakamura; Masaki Nambu; Masanori Fujita; Yoshihiro Tanaka; Yasutaka Mori; Masahiro Tagawa; Tadaaki Maehara; Masayuki Ishihara
We prepared fragmin/protamine microparticles (F/P MPs) as cell carriers to enhance cell viability. Use of material consisting of a low-molecular-weight heparin (fragmin) mixed with protamine resulted in water-insoluble microparticles (about 0.5-1 microm in diameter). In this study, we investigated the capability of F/P MPs to enhance the viabilities of human microvascular endothelial cells (HMVECs), human dermal fibroblasts (fibroblasts), and adipose tissue-derived stromal cells (ATSCs) in suspension culture. F/P MPs were bound to the surfaces of these cells, and the interaction of these cells with F/P MPs induced cells/F/P MPs-aggregate formations in vitro, and maintained viabilities of those cells for at least 3 days. The ATSCs/F/P MPs-aggregates adhered to and grew on suspension culture plates in a fashion similar to those on type I collagen-coated plates. The cultured ATSCs secreted significant amounts of angiogenic heparin-binding growth factors such as FGF-2. When the ATSCs/F/P MPs-aggregates were subcutaneously injected into the back of nude mice, significant neovascularization and fibrous tissue formation were induced near the site of injection from day 3 to week 2. The ATSCs/F/P MPs-aggregates were thus useful and convenient biomaterials for cell-therapy of angiogenesis.
Journal of Tissue Engineering | 2011
Masaki Nambu; Masayuki Ishihara; Satoko Kishimoto; Satoshi Yanagibayashi; Naoto Yamamoto; Ryuichi Azuma; Yasuhiro Kanatani; Tomoharu Kiyosawa; Hiroshi Mizuno
We aimed to evaluate the effectiveness of the application of an atelocollagen matrix containing autologous adipose tissue-derived stromal cells (ASCs) on wound healing in diabetic (db/db) mice. Cultured ASCs from db/db mice and from db/+ mice secreted identical amounts of growth factors, cytokines, and type I collagen. ASCs from db/db mice proliferated at the same rate as those from db/+ mice. When DiI-labeled ASCs were applied to full-thickness round skin wounds on the backs of diabetic db/db mice, histological observation at 2 weeks showed that red fluorescent-labeled tissues were formed in the epidermis, dermis, and capillaries. Twelve db/db mice were treated with either matrix alone or matrix containing ASCs and then sacrificed at 1 or 2 weeks. A histological examination demonstrated significantly advanced granulation tissue formation, capillary formation, and epithelialization in those wounds treated with atelocollagen matrix containing ASCs, compared with wounds treated with matrix alone.
Methods of Molecular Biology | 2011
Hiroshi Mizuno; Masaki Nambu
Intractable skin ulcers resulting from diabetes, ischemia and collagen diseases represent significant problems with few solutions. Cell-based therapy may hold promise in overcoming such disorders. In order to establish a suitable experimental model for the treatment of such ulcers using stem cells, this chapter describes detailed methods for: (1) isolation of stem cells from adipose tissue, termed adipose-derived stem cells (ASCs), (2) preparing a hybrid-type artificial dermis that consists of a type I collagen sponge and ASCs, (3) preparing intractable ulcers using Mitomycin C, and (4) evaluating the effect of wound healing histologically. ASCs seeded onto a type I collagen sponge are applied to intractable ulcers induced by topical application of Mitomycin C. Histological evaluation after 1 and 2 weeks revealed an increase in capillary density and granulation thickness of the hybrid-type artificial dermis. These findings suggest that ASCs may have a positive effect on wound healing and may be a useful tool for future cell-based therapy.
Transfusion | 2008
Hirofumi Yura; Yasuhiro Kanatani; Masayuki Ishihara; Bonpei Takase; Masaki Nambu; Satoko Kishimoto; Michihiro Kitagawa; Osamu Tatsuzawa; Yasutaka Hoshi; Shinya Suzuki; Mitsuyuki Kawakami; Takemi Matsui
BACKGROUND: Selection of hematopoietic stem cells can be used to prevent graft‐versus‐host disease (GVHD) after allograft transplantation. The purpose of the study was to examine a novel cell separation system comprising a galactose‐bound vinyl polymer (Gal‐VP) and soybean agglutinin (SBA), a galactose‐specific lectin.
Journal of Plastic Surgery and Hand Surgery | 2011
Megumi Takikawa; Shin-ichiro Nakamura; Masaki Nambu; Kaoru Sasaki; Satoshi Yanagibayashi; Ryuichi Azuma; Naoto Yamamoto; Tomoharu Kiyosawa
Abstract Our aim was to provide a new animal model for intractable skin ulcers in irradiated rats. Twenty-four rats were irradiated with total single radiographic irradiation doses of 10, 15, 20, and 30 Gy. The skin was observed for 6 months. In the 10-Gy group, there were no visible changes to the skin. In the 15-Gy group, epilation and depigmentation were seen about 2 weeks after irradiation. In the groups over 20-Gy, minor erosion or skin ulcers appeared in most rats. The wounds healed in the 20-Gy group, but many in the 30-Gy group could not be healed. A further 36 rats were irradiated with 20 Gy, and this was followed by the creation of cutaneous full-thickness defects at different periods. The size of the wounds was measured on days 0, 3, 5, 7, 10, and 14. Delayed wound healing was found in the irradiated groups compared with the unirradiated group (p = 0.01). There were no differences in the time of ulceration, except in the Day 7 group (p = 0.03).