Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masakuni Horiguchi is active.

Publication


Featured researches published by Masakuni Horiguchi.


Journal of Pharmacology and Experimental Therapeutics | 2011

The Role of 5-Hydroxytryptamine 7 Receptors in the Phencyclidine-Induced Novel Object Recognition Deficit in Rats

Masakuni Horiguchi; Mei Huang; Herbert Y. Meltzer

The role of 5-hydroxytryptamine (serotonin) (5-HT)7 receptor antagonism in the actions of atypical antipsychotic drugs (APDs), e.g., amisulpride, clozapine, and lurasidone, if any, is uncertain. We examined the ability of 5-HT7 receptor antagonism alone and as a component of amisulpride and lurasidone to reverse deficits in rat novel object recognition (NOR) produced by subchronic treatment with the N-methyl-d-aspartate receptor antagonist phencyclidine (PCP), and we examined the ability of supplemental 5-HT7 antagonism to augment the inability of sulpiride, haloperidol, and (1R,4R,5S,6R)-4-amino-2-oxabicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), a metabotropic glutamate receptor (mGluR) 2/3 agonist, which lack 5-HT7 antagonism, to reverse the NOR deficit. The 5-HT7 receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine (SB269970) (0.1–1 mg/kg) dose-dependently reversed PCP-induced NOR deficits. In addition, the ability of lurasidone (0.1 mg/kg) and amisulpride (3 mg/kg) to reverse this deficit was blocked by cotreatment with the 5-HT7 receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS19) (5–10 mg/kg), which did not affect NOR in naive rats. Sulpiride, a less potent 5-HT7 antagonist than amisulpride, did not itself improve the PCP-induced NOR deficit. However, a subeffective dose of SB269970 (0.1 mg/kg) in combination with subeffective doses of lurasidone (0.03 mg/kg), amisulpride (1 mg/kg), or sulpiride (20 mg/kg), also reversed the PCP-induced NOR deficit. Pimavanserin, a 5-HT2A inverse agonist, LY379268, and haloperidol did not potentiate the ability of subeffective SB269970 to improve the NOR deficit. Furthermore, the mGluR2/3 antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495), which blocks the effect of clozapine to reverse the NOR deficit, did not block the SB269970-induced amelioration of the NOR deficit. These results suggest 5-HT7 antagonism may contribute to the efficacy of some atypical APDs in the treatment of cognitive impairment in schizophrenia and may itself have some benefit in this regard.


Psychopharmacology | 2011

The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment

Herbert Y. Meltzer; Masakuni Horiguchi; Bill W. Massey

ObjectiveTo review the evidence that agents which preferentially affect serotonin (5-HT) attenuate the ability of N-methyl-D-aspartate (NMDA) receptor non-competitive antagonists (NMDA-RA), e.g., phencyclidine (PCP), dizocilpine (MK-801), and ketamine, to stimulate locomotor activity (LA), and to impair novel object recognition (NOR).RationaleNMDA-RA-induced increased LA and impairment of NOR are widely used models of the pathophysiology of schizophrenia, the mechanism of action of antipsychotic drugs (APDs), and the identification of novel treatments. Serotonin (5-HT) plays an important role in attenuating these effects of NMDA-RA.ResultsSelective 5-HT2A inverse agonists, e.g., M100907 and ACP-103, and atypical APDs, which are more potent 5-HT2A than D2 antagonists, e.g., clozapine and lurasidone, are more effective than selective D2 receptor antagonists to attenuate NMDA-RA-induced increased LA. 5-HT2A inverse agonists alone are not effective to improve NMDA-RA-impaired NOR, but augment the effects of atypical, but not typical APDs, to improve NOR. The 5-HT1A receptor partial agonist tandospirone alone and the 5-HT1A agonist effects of atypical APDs may substitute for, or contribute to, the effects of D2 and 5-HT2A receptor antagonism to reverse the NMDA-RA impairment in NOR. 5-HT6 and 5-HT7 receptor antagonists may also attenuate these NMDA-RA-induced behaviors. 5-HT2C receptor inverse agonist, but not neutral antagonists, block NOR in naïve rats and the effects of atypical APDs to restore NOR in PCP-treated rats, suggesting the importance of the constitutive activity of 5-HT2C receptors in NOR.ConclusionsMultiple 5-HT receptors contribute to effective treatments to reverse adverse effects of NMDA-RA which model psychosis and cognitive impairment.


The International Journal of Neuropsychopharmacology | 2013

Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia

Herbert Y. Meltzer; Lakshmi Rajagopal; Mei Huang; Yoshihiro Oyamada; Sunoh Kwon; Masakuni Horiguchi

The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those acutely effective to restore NOR following scNMDAR treatment, prevents the effect of scPCP to produce an enduring deficit in NOR. This difference in dosage may be relevant to utilizing AAPDs to prevent the onset of CIS in individuals at high risk for developing schizophrenia. The scNMDAR paradigm may be useful for identifying possible means to treat and prevent CIS.


Journal of Pharmacology and Experimental Therapeutics | 2010

Attenuation of Phencyclidine-Induced Object Recognition Deficits by the Combination of Atypical Antipsychotic Drugs and Pimavanserin (ACP 103), a 5-Hydroxytryptamine2A Receptor Inverse Agonist

S. Snigdha; Masakuni Horiguchi; Mei Huang; Zhu Li; Mohammed Shahid; Joanna C. Neill; Herbert Y. Meltzer

Subchronic administration of the N-methyl-d-aspartate receptor antagonist, phencyclidine (PCP), in rodents has been shown to produce impairment in novel object recognition (NOR), a model of visual learning and memory. We tested the hypothesis that the selective 5-HT2A inverse agonists, pimavanserin and (R)-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl]-4-piperidinemethanol (M100907), would potentiate subeffective doses of atypical antipsychotic drugs (APDs) to reverse the NOR deficits. Female rats received vehicle or PCP (2 mg/kg b.i.d.) for 7 days, followed by a 7-day washout. Pimavanserin (3 mg/kg) or M100907 (1 mg/kg) alone, or four atypicial APDs, risperidone (0.05–0.1 mg/kg), melperone (1–3 mg/kg), olanzapine (1–2 mg/kg), or N-desmethylclozapine (1–2 mg/kg), and the typical APD, haloperidol (0.05–0.1 mg/kg), were administered alone, or in combination with pimavanserin or M100907, before NOR testing. The exploration times of objects during 3-min acquisition and retention trials, separated by a 1-min interval, were compared by analysis of variance. Vehicle-, but not PCP-treated, animals, explored the novel object significantly more than the familiar in the retention trial (p < 0.05–0.01). Pretreatment with the higher doses of the atypical APDs, but not pimavanserin, M100907, or haloperidol alone, reversed the effects of PCP. The effect of risperidone was blocked by haloperidol pretreatment. Coadministration of pimavanserin or M100907, with ineffective doses of the atypical APDs, but not haloperidol, also reversed the PCP-induced deficit in NOR. These results support the importance of 5-hydroxytryptamine2A receptor blockade relative to D2 receptor blockade in the ability of atypicals to ameliorate the effect of subchronic PCP, a putative measure of cognitive dysfunction in schizophrenia.


Current Pharmaceutical Biotechnology | 2012

Serotonin Receptors as Targets for Drugs Useful to Treat Psychosis and Cognitive Impairment in Schizophrenia

Herbert Y. Meltzer; B. W. Massey; Masakuni Horiguchi

The concept that the efficacy of all antipsychotic drugs (APDs) can be explained by their action on dopamine (DA) D2 receptors is most challenged by drugs such as clozapine which target serotonin (5-HT)2A receptors as an essential component of their efficacy and tolerability. The 5-HT2A receptor, along with 5-HT1A, 5-HT 2C, 5-HT 6 or 5-HT 7 receptors, all of which are components of the mechanism of action of clozapine, represent important targets for treating multiple aspects of schizophrenia, especially psychosis and cognitive impairment. The class of atypical antipsychotic drugs (APDs), of which clozapine is the prototype, share in common more effective 5-HT 2A receptor inverse agonism and weaker interference with D2 receptor stimulation, either through D2 receptor blockade or partial D2 receptor agonism. This has led to development of a selective 5-HT2A antagonist, ACP-103 (pimavanserin), which has been found to be effective as monotherapy in L-DOPA psychosis and has promise as an add-on agent for sub-effective doses of atypical APDs. We review here the extensive preclinical evidence to support the importance of 5-HT2A receptor inverse agonism to the action of clozapine and related atypical APDs, and evidence supporting the potential of selective 5-HT2A, 5-HT 6 , and 5-HT 7, antagonists, 5-HT1A partial agonists and 5-HT2C agonists for development of drugs which ameliorate psychosis or cognitive impairment.


Molecular Pharmacology | 2012

The novel antipsychotic drug lurasidone enhances N-methyl-D-aspartate receptor-mediated synaptic responses.

Eunice Y. Yuen; Xiangning Li; Jing Wei; Masakuni Horiguchi; Herbert Y. Meltzer; Zhen Yan

N-Methyl-d-aspartate (NMDA) receptor (NMDAR) hypofunction has been postulated to contribute to the cognitive deficit of schizophrenia. In this study, we examined the effect of lurasidone (Latuda; Dainippon Sumitomo Pharma Co. Ltd., Tokyo, Japan), a newly approved atypical antipsychotic drug (APD), on NMDAR synaptic function in rat frontal cortical pyramidal neurons. In vivo administration of lurasidone produced a significant and selective enhancement of NMDAR-mediated synaptic responses and surface expression of NR2A and NR2B subunits. Lurasidone has high affinity for serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors and dopamine D2 receptors. In vivo administration of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2 -(2-(4-methyl-1-piperidinyl)ethyl)pyrrolidine (SB-269970) mimicked the enhancing effect of lurasidone on NMDAR responses, whereas the D2 receptor antagonist haloperidol failed to do so. Previous studies have found that short-term administration of lurasidone reverses the cognitive impairment induced by subchronic administration of phencyclidine (PCP), an NMDAR noncompetitive antagonist. In this study, we found that lurasidone, as well as the prototypical atypical APD clozapine, restored NMDAR-mediated synaptic responses to normal levels in the PCP model of schizophrenia. These results suggest that NMDAR is the potential key molecular target of lurasidone, possibility via antagonizing 5-HT7 receptors, which is consistent with evidence that 5-HT7 receptor antagonism contributes to cognitive enhancement by atypical APDs in patients with schizophrenia.


Behavioural Brain Research | 2013

D1 receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats

Masakuni Horiguchi; Kayleen E. Hannaway; Adesewa E. Adelekun; Mei Huang; Karu Jayathilake; Herbert Y. Meltzer

Development of dopamine (DA) D(1) receptor agonists is a priority to improve cognitive impairment in schizophrenia (CIS). This study examined the dose-response relationship of the selective D(1) agonist, SKF38393 (0.5-40 mg/kg), to reverse the deficit in novel object recognition (NOR), an analog of declarative memory in man, produced by subchronic phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor non-competitive antagonist, and the ability of the D(1) antagonists, SCH23390 (0.05 mg/kg) and SKF83566 (0.15 mg/kg), to impair NOR in normal Long-Evans female rats. We also examined the ability of tandospirone, a serotonin (5-HT)(1A) receptor partial agonist, and LY341495, a mGluR2/3 receptor antagonist, to potentiate or block the effects of SKF38393 on NOR, respectively. SKF38393 reversed the persistent NOR deficit produced by subchronic PCP; the dose-response curve for SKF38393 was an inverted U-shape, with the peak effect at 6 mg/kg. SKF83566 and SCH23390 impaired NOR in normal rats. Co-administration of sub-effective doses of SKF38393 (0.25 mg/kg) and tandospirone (0.2 mg/kg) improved the PCP-induced NOR deficit, while LY341495 (1 mg/kg) blocked the ameliorating effect of SKF38393 (6 mg/kg), respectively. These data provide the first evidence that the reversal of the PCP-induced NOR deficit by D(1) agonism has an inverted U-shaped dose-response curve and that 5-HT(1A) and mGluR2/3 receptor signalling facilitates the efficacy of D(1) agonism to improve these deficits. These data suggest that although D(1) agonists may be useful to improve CIS, these agents, particularly higher doses, may also worsen cognitive function in some patients, because of an inverted U-shaped dose response curve.


Neuroreport | 2012

5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.

Mei Huang; Masakuni Horiguchi; Anna R. Felix; Herbert Y. Meltzer

Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.


Neuropsychopharmacology | 2012

Prevention of the Phencyclidine-Induced Impairment in Novel Object Recognition in Female Rats by Co-Administration of Lurasidone or Tandospirone, a 5-HT 1A Partial Agonist

Masakuni Horiguchi; Kayleen E Hannaway; Adesewa E Adelekun; Karu Jayathilake; Herbert Y. Meltzer

Hypoglutamatergic function may contribute to cognitive impairment in schizophrenia (CIS). Subchronic treatment with the N-methyl-D-aspartate receptor antagonist, phencyclidine (PCP), induces enduring deficits in novel object recognition (NOR) in rodents. Acute treatment with atypical antipsychotic drugs (APDs), which are serotonin (5-HT)2A/dopamine D2 antagonists, but not typical APDs, eg, haloperidol, reverses the PCP-induced NOR deficit in rats. We have tested the ability of lurasidone, an atypical APD with potent 5-HT1A partial agonist properties, tandospirone, a selective 5-HT1A partial agonist, haloperidol, a D2 antagonist, and pimavanserin, a 5-HT2A inverse agonist, to prevent the development of the PCP-induced NOR deficit. Rats were administered lurasidone (0.1 or 1 mg/kg), tandospirone (5 mg/kg), pimavanserin (3 mg/kg), or haloperidol (1 mg/kg) b.i.d. 30 min before PCP (2 mg/kg, b.i.d.) for 7 days (day1–7), followed by a 7-day washout (day8–14). Subchronic treatment with PCP induced an enduring NOR deficit. Lurasidone (1 mg/kg) but not 0.1 mg/kg, which is effective to acutely reverse the deficit due to subchronic PCP, or tandospirone, but not pimavanserin or haloperidol, significantly prevented the PCP-induced NOR deficit on day 15. The ability of lurasidone co-treatment to prevent the PCP-induced NOR deficit was enduring and still present at day 22. The preventive effect of lurasidone was blocked by WAY100635, a selective 5-HT1A antagonists, further evidence for the importance of 5-HT1A receptor stimulation in the NOR deficit produced by subchronic PCP. Further study is needed to determine whether these results concerning mechanism and dosage can be the basis for prevention of the development of CIS in at risk populations.


Behavioural Brain Research | 2013

Blonanserin reverses the phencyclidine (PCP)-induced impairment in novel object recognition (NOR) in rats: Role of indirect 5-HT1A partial agonism

Masakuni Horiguchi; Herbert Y. Meltzer

Blonanserin is an atypical antipsychotic drug (APD) which, compared to other atypical APDs, is a relatively selective serotonin (5-HT)2A and dopamine D2 antagonist. Comparing blonanserin with more broadly acting atypical APDs could be useful to test the contributions of actions at other monoamine receptors, e.g. 5-HT1A receptors, to the reversal of PCP-induced novel object recognition (NOR) deficit. In this study, we tested the effect of blonanserin alone, and in combination with 5-HT1A agents, on NOR deficit induced by subchronic treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist, phencyclidine (PCP; 2 mg/kg), b.i.d., for 7 days. Blonanserin, 1mg/kg, but not 0.3mg/kg, improved the PCP-induced NOR deficit. However, at 1mg/kg, object exploration was diminished. Co-administration of sub-effective doses of blonanserin (0.3 mg/kg) and the 5-HT1A partial agonist, tandospirone (0.2 mg/kg), significantly reversed the NOR deficit without diminishing activity during the acquisition or retention periods. The combination of WAY100635 (0.6 mg/kg), a 5-HT1A antagonist, and blonanserin (1 mg/kg), also diminished object exploration which prevented assessment of the effect of this combination on NOR. WAY100635 (0.6 mg/kg) blocked the ameliorating effect of risperidone (0.1 mg/kg), another atypical APD with low affinity for 5-HT1A receptors, but did not impair exploration. These results suggest that blonansein and risperidone, atypical APDs which lack a direct action on 5-HT1A receptors require 5-HT1A receptor stimulation to reverse the subchronic PCP-induced NOR deficit and provide a support for clinical trial of blonanserin in combination with tandospirone to ameliorate cognitive impairment in schizophrenia and to have fewer side effects.

Collaboration


Dive into the Masakuni Horiguchi's collaboration.

Top Co-Authors

Avatar

Herbert Y. Meltzer

Dainippon Sumitomo Pharma Co.

View shared research outputs
Top Co-Authors

Avatar

Mei Huang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Herbert Y. Meltzer

Dainippon Sumitomo Pharma Co.

View shared research outputs
Top Co-Authors

Avatar

Karu Jayathilake

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adesewa E. Adelekun

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge