Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masami Uechi is active.

Publication


Featured researches published by Masami Uechi.


Circulation Research | 1996

Adverse Effects of Chronic Endogenous Sympathetic Drive Induced by Cardiac Gsα Overexpression

Mitsunori Iwase; Sanford P. Bishop; Masami Uechi; Dorothy E. Vatner; Richard P. Shannon; Raymond K. Kudej; David C. Wight; Thomas Wagner; Yoshihiro Ishikawa; Charles J. Homcy; Stephen F. Vatner

To study the physiological effect of the overexpression of myocardial Gsalpha (protein levels increased by approximately threefold in transgenic mice), we examined the responsiveness to sympathomimetic amines by echocardiography (9 MHz) in five transgenic mice and five control mice (both 10.3 +/- 0.2 months old). Myocardial contractility in transgenic mice, as assessed by left ventricular (LV) fractional shortening (LVFS) and LV ejection fraction (LVEF) was not different from that of control mice at baseline (LVFS, 40 +/- 3% versus 36 +/- 2%; LVEF, 78 +/- 3% versus 74 +/- 3%). LVFS and LVEF values in transgenic mice during isoproterenol (ISO, 0.02 micrograms/kg per minute) infusion were higher than the values in control mice (LVFS, 68 +/- 4% versus 48 +/- 3%; LVEF, 96 +/- 1% versus 86 +/- 3%; P < .05). Norepinephrine (NE, 0.2 micrograms/kg per minute) infusion also increased LVFS and LVEF in transgenic mice more than in control mice (LVFS, 59 +/- 4% versus 47 +/- 3%; LVEF, 93 +/- 2% versus 85 +/- 3%; P < .05). Heart rates of transgenic mice were higher than those of control mice during ISO and NE infusion. In three transgenic mice with heart rates held constant, LV dP/dt rose by 33 +/- 2% with ISO (0.02 micrograms/kg per minute) and by only 13 +/- 2% in three wild-type control mice (P < .01). NE (0.1 micrograms/kg per minute) also induced a greater effect on LV dP/dt in the three transgenic mice with heart rates held constant compared with three wild-type control mice (65 +/ 8% versus 28 +/- 4%, P < .05). Pathological and histological analyses of older transgenic mouse hearts (16.0 +/- 0.8 months old) revealed hypertrophy, degeneration, atrophy of cells, and replacement fibrosis reflected by significant increases in collagen volume in the subendocardium (5.2 +/- 1.4% versus 1.2 +/- 0.3%, P < .05) and in the cross-sectional area of myocytes (298 +/- 29 versus 187 +/- 12 micron2, P < .05) compared with control mouse hearts. These results suggest that Gsalpha overexpression enhances the efficacy of the beta-adrenergic receptor-Gs-adenylyl cyclase signaling pathway. This in turn leads to augmented inotropic and chronotropic responses to endogenous sympathetic stimulation. This action over the life of the animal results in myocardial damage characterized by cellular degeneration, necrosis, and replacement fibrosis, with the remaining cells undergoing compensatory hypertrophy. As a model, this transgenic mouse offers new insights into the mechanisms of cardiomyopathy and heart failure and provides a new tool for their study.


Circulation Research | 1998

Depressed Heart Rate Variability and Arterial Baroreflex in Conscious Transgenic Mice With Overexpression of Cardiac Gsα

Masami Uechi; Kuniya Asai; Motohisa Osaka; Amelia Smith; Naoki Sato; Thomas Wagner; Yoshihiro Ishikawa; Hirokazu Hayakawa; Dorothy E. Vatner; Richard P. Shannon; Charles J. Homcy; Stephen F. Vatner

Recently, we developed a transgenic mouse with cardiac-specific Gsalpha overexpression (TG mouse), which exhibits enhanced postsynaptic beta-adrenergic receptor signaling, ultimately developing a cardiomyopathy. The goal of the present study was to determine whether cardiac Gsalpha overexpression alters autonomic cardiovascular control, which could shed light on the mechanism responsible for the later development of cardiomyopathy. Mean arterial pressure was increased (P<.05) in conscious, chronically instrumented TG mice (123+/-1 mm Hg) compared with age-matched wild-type (WT) control mice (103+/-1 mm Hg). Respiratory frequency was increased (P<.05) in TG mice (269+/-26/min) compared with WT mice (210+/-20/min). By use of telemetric techniques, baseline heart rate (HR) was elevated (P<.05) in conscious, untethered TG mice (696+/-13 bpm) compared with WT mice (568+/-28 bpm). Intrinsic HR, after propranolol and atropine or after ganglionic blockade with hexamethonium, was not different between TG and WT mice. Both the normal minute-to-minute and circadian variations of HR observed in WT mice were markedly blunted in TG mice. HR variability was assessed by the time-domain and frequency-domain methods. At baseline, time-domain analysis indices were reduced (P<.05) in TG mice compared with WT mice. Although the low frequency (LF) component was higher (P<.05) than the high frequency (HF) component in WT mice, the LF component was less (P<.05) than the HF component in TG mice. In addition, arterial baroreflex regulation of HR was markedly blunted in TG mice in response to both nitroglycerin-induced hypotension and phenylephrine-induced hypertension. The reduced LF/HF ratio in TG mice was surprising in view of enhanced beta-adrenergic signaling and may be due to reduced neural tone secondary to the elevated arterial pressure or alterations in arterial baroreflex control. Dobutamine infusion in WT mice also resulted in depressed HR variability. The combination of elevated baseline HR, arterial pressure, and respiratory frequency suggests that enhanced beta-adrenergic signaling in TG mice results in reduced HR variability, in terms of both minute-to-minute variability and the lack of circadian variations in HR. The lack of normal HR variability in general and the failure of HR to decline, even during sleep, may actually be critical mechanisms contributing to the ultimate development of cardiomyopathy in these animals.


Journal of Clinical Microbiology | 2004

Molecular Evidence of Infections with Babesia gibsoni Parasites in Japan and Evaluation of the Diagnostic Potential of a Loop-Mediated Isothermal Amplification Method

Hiromi Ikadai; Hiroko Tanaka; Nona Shibahara; Aya Matsuu; Masami Uechi; Naoyuki Itoh; Sugao Oshiro; Noboru Kudo; Ikuo Igarashi; Takashi Oyamada

ABSTRACT Detection and analysis of Babesia gibsoni infection were performed with whole-blood samples collected between July 2002 and July 2003 from 945 and 137 dogs from the Aomori and Okinawa Prefectures of Japan, respectively, by PCR and loop-mediated isothermal amplification (LAMP). On the basis of the criterion for positivity by PCR, 3.9% (37 of 945) and 10.9% (15 of 137) of the dogs had B. gibsoni DNA. All 37 positive animals from Aomori Prefecture were male Tosa dogs (Japanese mastiff). The 15 dogs from Okinawa Prefecture with positive PCR assay results were of various breeds, ages, and sexes. The 18S ribosomal DNA (18S rDNA) sequences from all samples showed 100% homology to each other and to published B. gibsoni sequences. The limits of detection of B. gibsoni parasitemia by the PCR and LAMP methods with an 18S rDNA-based primer set were 0.0005% each. A comparison of the PCR and LAMP methods with microscopic examination for the detection of B. gibsoni infections in blood samples from 945 field dogs in Aomori Prefecture and 137 field dogs in Okinawa Prefecture showed that 37 and 15 dogs, respectively, were positive by the PCR and LAMP methods and that 16 and 12 dogs, respectively, were positive by light microscopic examination. All samples found to be positive by microscopic examination were also positive by the PCR and LAMP methods. The results of the PCR and LAMP methods agreed for samples with positive results by either method. Moreover, nonspecific reactions were not observed by the LAMP method. These results suggest that the LAMP method provides a useful tool for the detection of B. gibsoni infections in dogs.


Circulation | 2010

Development of a Completely Autologous Valved Conduit With the Sinus of Valsalva Using In-Body Tissue Architecture Technology A Pilot Study in Pulmonary Valve Replacement in a Beagle Model

Masashi Yamanami; Yuki Yahata; Masami Uechi; Megumi Fujiwara; Hatsue Ishibashi-Ueda; Keiichi Kanda; Taiji Watanabe; Tsutomu Tajikawa; Kenkichi Ohba; Hitoshi Yaku; Yasuhide Nakayama

Background— We developed autologous prosthetic implants by simple and safe in-body tissue architecture technology. We present the first report on the development of autologous valved conduit with the sinus of Valsalva (BIOVALVE) by using this unique technology and its subsequent implantation in the pulmonary valves in a beagle model. Methods and Results— A mold of BIOVALVE organization was assembled using 2 types of specially designed silicone rods with a small aperture in a trileaflet shape between them. The concave rods had 3 projections that resembled the protrusions of the sinus of Valsalva. The molds were placed in the dorsal subcutaneous spaces of beagle dogs for 4 weeks. The molds were covered with autologous connective tissues. BIOVALVEs with 3 leaflets in the inner side of the conduit with the sinus of Valsalva were obtained after removing the molds. These valves had adequate burst strength, similar to that of native valves. Tight valvular coaptation and sufficient open orifice area were observed in vitro. These BIOVALVEs were implanted to the main pulmonary arteries as allogenic conduit valves (n=3). Postoperative echocardiography demonstrated smooth movement of the leaflets with trivial regurgitation. Histological examination of specimens obtained at 84 days showed that the surface of the leaflet was covered by endothelial cells and neointima, including an elastin fiber network, and was formed at the anastomosis sides on the luminal surface of the conduit. Conclusion— We developed the first completely autologous BIOVALVE and successfully implanted these BIOVALVEs in a beagle model in a pilot study.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Prevention of heart failure in mice by an antiviral agent that inhibits type 5 cardiac adenylyl cyclase

Kousaku Iwatsubo; Claudio Bravo; Masami Uechi; Erdene Baljinnyam; Takashi Nakamura; Masanari Umemura; Lo Lai; Shumin Gao; Lin Yan; Xin Zhao; Misun Park; Hongyu Qiu; Satoshi Okumura; Mizuka Iwatsubo; Dorothy E. Vatner; Stephen F. Vatner; Yoshihiro Ishikawa

Despite numerous discoveries from genetically engineered mice, relatively few have been translated to the bedside, mainly because it is difficult to translate from genes to drugs. This investigation examines an antiviral drug, which also has an action to selectively inhibit type 5 adenylyl cyclase (AC5), a pharmaceutical correlate of the AC5 knockout (KO) model, which exhibits longevity and stress resistance. Our objective was to examine the extent to which pretreatment with this drug, adenine 9-β-d-arabinofuranoside (Ara-A), favorably ameliorates the development of heart failure (HF). Ara-A exhibited selective inhibition for AC5 compared with the other major cardiac AC isoform, AC6, i.e., it reduced AC activity significantly in AC5 transgenic (Tg) mice, but not in AC5KO mice and had little effect in either wild-type or AC6Tg mice. Permanent coronary artery occlusion for 3 wk in C57Bl/6 mice increased mortality and induced HF in survivors, as reflected by reduced cardiac function, while increasing cardiac fibrosis. The AC5 inhibitor Ara-A significantly improved all of these end points and also ameliorated chronic isoproterenol-induced cardiomyopathy. As with the AC5KO mice, Ara-A increased mitogen/extracellular signal-regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) phosphorylation. A MEK inhibitor abolished the beneficial effects of the AC5 inhibitor in the HF model, indicating the involvement of the downstream MEK-ERK pathway of AC5. Our data suggest that pharmacological AC5 inhibition may serve as a new therapeutic approach for HF.


Journal of Veterinary Internal Medicine | 2016

Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study—A Randomized Clinical Trial

A. Boswood; Jens Häggström; Sonya G. Gordon; Gerhard Wess; Rebecca L. Stepien; Mark A. Oyama; Bruce W. Keene; John D. Bonagura; Kristin A. MacDonald; Mark Patteson; Sarah Smith; Philip R. Fox; K. Sanderson; R. Woolley; Viktor Szatmári; Pierre Menaut; W.M. Church; M.L. O'Sullivan; J.-P. Jaudon; J.G. Kresken; John E. Rush; Kirstie A. Barrett; Steven L. Rosenthal; Ashley B. Saunders; I. Ljungvall; M. Deinert; E. Bomassi; Amara H. Estrada; M.J. Fernández del Palacio; N.S. Moïse

Background Pimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown. Hypothesis/Objectives Administration of pimobendan (0.4–0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac‐related death, or euthanasia. Animals 360 client‐owned dogs with MMVD with left atrial‐to‐aortic ratio ≥1.6, normalized left ventricular internal diameter in diastole ≥1.7, and vertebral heart sum >10.5. Methods Prospective, randomized, placebo‐controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac‐related death, or euthanasia. Results Median time to primary endpoint was 1228 days (95% CI: 856–NA) in the pimobendan group and 766 days (95% CI: 667–875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47–0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952–NA) in the pimobendan group and 902 days (95% CI: 747–1061) in the placebo group) (P = .012). Conclusions and Clinical Importance Administration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit.


Journal of Veterinary Cardiology | 2012

Mitral valve repair in dogs.

Masami Uechi

Prognosis for dogs with severe mitral regurgitation is poor with medical therapy alone. Open surgical mitral valve repair consisting of circumferential mitral annuloplasty and artificial chordal replacement confers durability and improved long-term clinical outcome without a need for long-term antithrombotic therapies. This approach has been successfully used in canine patients, including small-breed dogs. Methods for mitral valve repair applicable to small dogs are described.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Selective large coronary endothelial dysfunction in conscious dogs with chronic coronary pressure overload

Bijan Ghaleh; Luc Hittinger; Song-Jung Kim; Raymond K. Kudej; Mitsunori Iwase; Masami Uechi; Alain Berdeaux; Sanford P. Bishop; Stephen F. Vatner

Coronary vascular responses to acetylcholine (ACh, 3 μg/kg iv), nitroglycerin (NTG, 25 μg/kg iv), and a 20-s coronary artery occlusion (reactive hyperemia, RH) were investigated in seven conscious dogs with severe left ventricular (LV) hypertrophy and chronic coronary pressure overload (CCPO) due to supravalvular aortic banding and in seven control dogs. All dogs were instrumented for measurement of ultrasonic coronary diameter (CD) and Doppler coronary blood flow (CBF). LV-to-body weight ratio was increased by 82% in CCPO dogs. In control dogs, ACh increased CD (+5.9 ± 1.7%). This response was reduced ( P < 0.05) in CCPO dogs (+1.9 ± 0.9%). Similarly, flow-mediated increases in CD after RH were blunted ( P < 0.01) in CCPO (+2.1 ± 0.8) vs. control dogs (+6.8 ± 1.8%). In contrast, ACh and RH increased CBF similarly in both groups. Increases in both CD and CBF to NTG were not different between control dogs and CCPO. Peak systolic CBF velocity was greater, P< 0.01, in CCPO (94 ± 17 cm/s) compared with control (35 ± 7 cm/s) dogs, most likely secondary to the increased systolic coronary perfusion pressure (215 vs. 130 mmHg). Histological analyses of large coronary arteries in CCPO revealed medial thickening, intimal thickening, and disruption of the internal elastic lamina and endothelium. In contrast, small intramyocardial arterioles failed to show the intimal and endothelial lesions. Thus, in CCPO selective to the coronary arteries, i.e., a model independent from systemic hypertension and enhanced levels of plasma renin activity, endothelial control was impaired for both flow-mediated and receptor-mediated large coronary artery function, which could be accounted for by the major morphological changes in the large coronary arteries sparing the resistance vessels. The mechanism may involve chronically elevated systolic coronary perfusion pressure, CBF velocity, and potential disruption of laminar flow patterns.Coronary vascular responses to acetylcholine (ACh, 3 micrograms/kg i.v.), nitroglycerin (NTG, 25 micrograms/kg i.v.), and a 20-s coronary artery occlusion (reactive hyperemia, RH) were investigated in seven conscious dogs with severe left ventricular (LV) hypertrophy and chronic coronary pressure overload (CCPO) due to supravalvular aortic banding and in seven control dogs. All dogs were instrumented for measurement of ultrasonic coronary diameter (CD) and Doppler coronary blood flow (CBF). LV-to-body weight ratio was increased by 82% in CCPO dogs. In control dogs, ACh increased CD (+ 5.9 +/- 1.7%). This response was reduced (P < 0.05) in CCPO dogs (+ 1.9 +/- 0.9%). Similarly, flow-mediated increases in CD after RH were blunted (P < 0.01) in CCPO (+ 2.1 +/- 0.8) vs. control dogs (+ 6.8 +/- 1.8%). In contrast, ACh and RH increased CBF similarly in both groups. Increases in both CD and CBF to NTG were not different between control dogs and CCPO. Peak systolic CBF velocity was greater, P < 0.01, in CCPO (94 +/- 17 cm/s) compared with control (35 +/- 7 cm/s) dogs, most likely secondary to the increased systolic coronary perfusion pressure (215 vs. 130 mmHg). Histological analyses of large coronary arteries in CCPO revealed medial thickening, intimal thickening, and disruption of the internal elastic lamina and endothelium. In contrast, small intramyocardial arterioles failed to show the intimal and endothelial lesions. Thus, in CCPO selective to the coronary arteries, i.e., a model independent from systemic hypertension and enhanced levels of plasma renin activity, endothelial control was impaired for both flow-mediated and receptor-mediated large coronary artery function, which could be accounted for by the major morphological changes in the large coronary arteries sparing the resistance vessels. The mechanism may involve chronically elevated systolic coronary perfusion pressure, CBF velocity, and potential disruption of laminar flow patterns.


Circulation | 1997

Effects of Cardiac Denervation on Development of Heart Failure and Catecholamine Desensitization

Naoki Sato; Stephen F. Vatner; You-Tang Shen; Raymond K. Kudej; Bijan Ghaleh-Marzban; Masami Uechi; Kuniya Asai; Israel Mirsky; Thomas Patrick; Richard P. Shannon; Dorothy E. Vatner

BACKGROUND Two signatures of heart failure are activation of the sympathetic nervous system and catecholamine desensitization. However, whether or not the elimination of cardiac nerves affects either the progression of heart failure or catecholamine desensitization is not clear. METHODS AND RESULTS We studied 8 dogs with selective ventricular denervation (VD) (surgical technique) and 10 intact dogs, chronically instrumented for measurement of left ventricular (LV) and arterial pressures, LV dP/dt, LV internal diameter, and wall thickness before and after heart failure was induced by rapid pacing (240 bpm) for 3 to 4 weeks. VD was confirmed by the absence of reflex effects induced by intracardiac veratrine and depletion of tissue norepinephrine and by supersensitive responses to norepinephrine. During the development of heart failure, LV end-systolic and end-diastolic stresses and heart rate increased, while myocardial contractility, as reflected by LV dP/dt and mean velocity of circumferential fiber shortening corrected for heart rate (Vcf(c)), decreased in both intact and VD dogs. However, the increases in LV end-diastolic stress and decreases in LV dP/dt as well as the relationship between LV systolic stress and Vcf(c) in heart failure were less (P<.05) in VD dogs. The responses of LV dP/dt and heart rate to both isoproterenol and norepinephrine in intact dogs were reduced in heart failure. The physiological desensitization to the inotropic effects of isoproterenol and norepinephrine was less in dogs with VD (P<.05), but chronotropic responses were similar because atrial innervation remained intact. Plasma norepinephrine levels were not different in VD dogs (592+/-79 pg/mL) compared with intact dogs (576+/-81 pg/mL) in heart failure. CONCLUSIONS Dogs with selective VD tolerated the development of heart failure better than intact dogs and demonstrated significantly less catecholamine desensitization. The latter indicates that intact ventricular innervation is required for physiological expression of catecholamine desensitization despite comparable elevation of plasma catecholamines during the development of heart failure.


Veterinary Journal | 2014

Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells

Shota Kono; Tomohiko Kazama; Koichiro Kano; Kayoko Harada; Masami Uechi; Taro Matsumoto

It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

Collaboration


Dive into the Masami Uechi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge