Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masamichi Mori is active.

Publication


Featured researches published by Masamichi Mori.


Cancer Science | 2011

Broad spectrum and potent antitumor activities of YM155, a novel small‐molecule survivin suppressant, in a wide variety of human cancer cell lines and xenograft models

Takahito Nakahara; Aya Kita; Kentaro Yamanaka; Masamichi Mori; Nobuaki Amino; Masahiro Takeuchi; Fumiko Tominaga; Isao Kinoyama; Akira Matsuhisa; Masafumi Kudou; Masao Sasamata

Antitumor activities of YM155, a novel small‐molecule survivin suppressant, were investigated in a wide variety of human cancer cell lines and xenograft models. YM155 inhibited the growth of 119 human cancer cell lines, with the greatest activity in lines derived from non‐Hodgkin’s lymphoma, hormone‐refractory prostate cancer, ovarian cancer, sarcoma, non‐small‐cell lung cancer, breast cancer, leukemia and melanoma. The mean log growth inhibition of 50% (GI50) value was 15 nM. The mean GI50 values of YM155 were 11 nM for p53 mut/null cell lines and 16 nM for p53 WT cell lines, suggesting that YM155 inhibits the growth of human tumor cell lines regardless of their p53 status. In non‐small‐cell lung cancer (Calu 6, NCI‐H358), melanoma (A375), breast cancer (MDA‐MB‐231) and bladder cancer (UM‐UC‐3) xenograft models, 3‐ or 7‐day continuous infusions of YM155 (1–10 mg/kg) demonstrated significant antitumor activity without showing significant bodyweight loss. Tumor regressions induced by YM155 were associated with reduced intratumoral survivin expression levels, increased apoptosis and decreased mitotic indices. The broad and potent antitumor activity presented in the present study is indicative of the therapeutic potential of YM155 in the clinical setting. (Cancer Sci 2011; 102: 614–621)


Molecular Cancer Therapeutics | 2014

The Selective Anaplastic Lymphoma Receptor Tyrosine Kinase Inhibitor ASP3026 Induces Tumor Regression and Prolongs Survival in Non–Small Cell Lung Cancer Model Mice

Masamichi Mori; Yoko Ueno; Satoshi Konagai; Hiroshi Fushiki; Itsuro Shimada; Yutaka Kondoh; Rika Saito; Kenichi Mori; Nobuaki Shindou; Takatoshi Soga; Hideki Sakagami; Takashi Furutani; Hitoshi Doihara; Masafumi Kudoh; Sadao Kuromitsu

Activation of anaplastic lymphoma receptor tyrosine kinase (ALK) is involved in the pathogenesis of several carcinomas, including non–small cell lung cancer (NSCLC). Echinoderm microtubule–associated protein like 4 (EML4)-ALK, which is derived from the rearrangement of ALK and EML4 genes, has been validated as a therapeutic target in a subset of patients with NSCLC. Here, we investigated the effects of ASP3026, a novel small-molecule ALK inhibitor, against ALK-driven NSCLC. ASP3026 inhibited ALK activity in an ATP-competitive manner and had an inhibitory spectrum that differed from that of crizotinib, a dual ALK/MET inhibitor. In mice xenografted with NCI-H2228 cells expressing EML4-ALK, orally administered ASP3026 was well absorbed in tumor tissues, reaching concentrations >10-fold higher than those in plasma, and induced tumor regression with a wide therapeutic margin between efficacious and toxic doses. In the same mouse model, ASP3026 enhanced the antitumor activities of paclitaxel and pemetrexed without affecting body weight. ASP3026 also showed potent antitumor activities, including tumor shrinkage to a nondetectable level, in hEML4-ALK transgenic mice and prolonged survival in mice with intrapleural NCI-H2228 xenografts. In an intrahepatic xenograft model using NCI-H2228 cells, ASP3026 induced continuous tumor regression, whereas mice treated with crizotinib showed tumor relapse after an initial response. Finally, ASP3026 exhibited potent antitumor activity against cells expressing EML4-ALK with a mutation in the gatekeeper position (L1196M) that confers crizotinib resistance. Taken together, these findings indicate that ASP3026 has potential efficacy for NSCLC and is expected to improve the therapeutic outcomes of patients with cancer with ALK abnormality. Mol Cancer Ther; 13(2); 329–40. ©2014 AACR.


Leukemia Research | 2011

Antitumor effects of YM155, a novel survivin suppressant, against human aggressive non-Hodgkin lymphoma.

Aya Kita; Takahito Nakahara; Kentaro Yamanaka; Kenji Nakano; Mari Nakata; Masamichi Mori; Naoki Kaneko; Hiroshi Koutoku; Nobuyuki Izumisawa; Masao Sasamata

YM155, a novel small-molecule that down-regulates survivin, exhibits broad, potent antitumor activity against a range of human tumors. We evaluated the activity of YM155 in aggressive non-Hodgkin lymphoma. In a number of diffuse large B-cell lymphoma lines, YM155 exhibited 50% growth inhibition with values between 0.23 and 3.9 nM. Within in vivo xenograft models, continuous infusion of YM155 eradicated large, established subcutaneous WSU-DLCL-2 and Ramos tumors, with sustained efficacy observed through 4 cycles of YM155 therapy. YM155 increased survival significantly versus rituximab in disseminated Ramos models. This study suggests that YM155 may represent an effective treatment for aggressive lymphomas.


The Journal of Steroid Biochemistry and Molecular Biology | 1997

Inhibitory effects of a novel aromatase inhibitor, YM511, on growth of endometrial explants and insulin-like growth factor-I gene expression in rats with experimental endometriosis

Masafumi Kudoh; Yoko Susaki; Yukitaka Ideyama; Taiki Nanya; Masamichi Mori; Hisataka Shikama

Estrogen deprivation therapy effectively prevents progress of endometriosis but the precise mechanism by which estrogen stimulates growth of endometriotic implants is still unknown. We examined effects of hypoestrogenic state induced by ovariectomy, gonadotropin-releasing hormone agonist (leuprolide) or aromatase inhibitor (YM511), on growth of experimental endometrial explant, a section of endometrium transplanted under the renal capsule, in rats. Ovariectomy gradually reduced the volume of endometrial explants for 21 days. YM511 (0.1 mg/kg) and leuprolide (1 mg/rat) completely reduced volume of endometrial explants but they differed widely in the onset of inhibitory action. YM511 prevented growth of explants on day 4 but leuprolide had no inhibitory effect until day 15. YM511 dose-dependently reduced volume of endometrial explants and its minimum effective dose was 0.04 mg/kg. Insulin-like growth factor-I (IGF-I) mRNA expression in endometrial explant and uterus was examined on day 4. YM511 decreased IGF-I expression in endometrial explant and uterus by 58% and 48%, respectively. Reductions of the extent of IGF-I expression by YM511 and ovariectomy were comparable. A significant correlation between the volume and IGF-I mRNA expression in endometrial explant suggests that local expression of this gene may play an important role in stimulating growth of endometrial explants.


European Journal of Pharmacology | 2008

Minodronic acid, a third-generation bisphosphonate, antagonizes purinergic P2X2/3 receptor function and exerts an analgesic effect in pain models

Shuichiro Kakimoto; Yukinori Nagakura; Seiji Tamura; Tomonari Watabiki; Kumiko Shibasaki; Shohei Tanaka; Masamichi Mori; Masao Sasamata; Masamichi Okada

The P2X(2/3) receptor has an important role in the nociceptive transmission. Minodronic acid is a third third-generation bisphosphonate and a potent inhibitor of bone resorption. We found that minodronic acid inhibited alpha,beta-methylene ATP-induced cation uptake with the potency higher than that of suramin in the P2X(2/3) receptor receptor-expressing cells. Other bisphosphonates did not show such activity. Subcutaneously administered (10-50 mg/kg) minodronic acid significantly inhibited the alpha,beta-methylene ATP-, acetic acid- and formalin-induced nociceptive behaviors in mice. These unique effects of minodronic acid would be beneficial for the treatment of accelerated bone turnover diseases accompanied by bone pain, including bone metastases.


Clinical Cancer Research | 2014

Combination of YM155, a survivin suppressant, with bendamustine and rituximab: A new combination therapy to treat relapsed/refractory diffuse large B-cell lymphoma

Naoki Kaneko; Keisuke Mitsuoka; Nobuaki Amino; Kentaro Yamanaka; Aya Kita; Masamichi Mori; Sosuke Miyoshi; Sadao Kuromitsu

Purpose: There remains an unmet therapeutic need for patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). The purpose of this study was to evaluate the therapeutic potential of sepantronium bromide (YM155), a survivin suppressant, in combination with either bendamustine or both bendamustine and rituximab using DLBCL models. Experimental Design: Human DLBCL cell lines, DB, SU-DHL-8, and WSU-DLCL2, were treated with YM155 in combination with bendamustine. Cell viability, apoptosis induction, protein expression, and cell-cycle distribution were evaluated. Furthermore, antitumor activities of YM155, in combination with bendamustine or both bendamustine and rituximab, were evaluated in mice bearing human DLBCL xenografts. Results: The combination of YM155 with bendamustine showed greater cell growth inhibition and sub-G1 population than either agent alone. YM155 inhibited bendamustine-induced activation of the ATM pathway and accumulation of survivin at G2–M phase, with greater DNA damage and apoptosis than either single agent alone. In a DLBCL DB murine xenograft model, YM155 enhanced the antitumor activity of bendamustine, resulting in complete tumor regression without affecting body weight. Furthermore, YM155 combined with bendamustine and rituximab, decreased FLT-PET signals in lymph nodes and prolonged overall survival of mice bearing disseminated SU-DHL-8, an activated B-cell–like (ABC)-DLBCL xenografts when compared with the combination of either rituximab and bendamustine or YM155 with rituximab. Conclusions: These results support a clinical trial of the combination of YM155 with bendamustine and rituximab in relapsed/refractory DLBCL. Clin Cancer Res; 20(7); 1814–22. ©2014 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2012

Sepantronium Bromide (YM155) Enhances Response of Human B-cell non-Hodgkin Lymphoma to Rituximab

Aya Kita; Keisuke Mitsuoka; Naoki Kaneko; Mari Nakata; Kentaro Yamanaka; Makoto Jitsuoka; Sosuke Miyoshi; Akihiro Noda; Masamichi Mori; Takahito Nakahara; Masao Sasamata

In the treatment of B-cell non-Hodgkin lymphoma (B-NHL) rituximab improves long-term survival in combination with conventional chemotherapy. However, because the majority of patients with B-NHL eventually relapse, the development of more effective therapies is needed. Here, we evaluated the antitumor effects of a combination treatment involving sepantronium bromide (YM155), a first-in-class survivin suppressant, and rituximab in B-NHL xenograft mice models. To determine the efficacy of the combination treatment, YM155- and rituximab-treated B-NHL cell xenografted mice were monitored for tumor size and survival and subjected to 2′-deoxy-2′-18F-fluoro-d-glucose (18F-FDG) and 3′-18F-fluoro-3′-deoxythymidine (18F-FLT) positron emission tomography (PET) imaging. In addition, the cell proliferation status of excised tumors was examined by Ki-67 immunohistochemistry. In DB, WSU-DLCL-2, and Mino xenograft-bearing mice, the combination treatment of YM155 and rituximab induced significant tumor growth inhibition and tumor regression compared with either single agent. On day 3 after the initiation of treatment a significant decrease in both 18F-FDG and 18F-FLT tumor uptake from pretreatment levels was observed in combination treatment groups. The Ki-67 proliferation index was significantly decreased on day 3 in the xenograft models treated with combination treatment, suggesting that the combination of YM155 and rituximab reduced cell proliferation and glucose metabolism. Furthermore, compared with monotherapy, combination treatment prolonged survival times of severe combined immunodeficient mice with disseminated WSU-FSCCL and Jeko B-NHL tumors. Our findings demonstrate that YM155 and rituximab combination treatment enhances antitumor activity in B-NHL xenografts, and 18F-FLT and 18F-FDG PET imaging may allow the early functional evaluation of treatment responses in patients with B-NHL.


The Journal of Steroid Biochemistry and Molecular Biology | 1996

Inhibitory effect of a novel non-steroidal aromatase inhibitor, YM511 on the proliferation of MCF-7 human breast cancer cell

Masafumi Kudoh; Yoko Susaki; Yukitaka Ideyama; Taiki Nanya; Masamichi Mori; Hisataka Shikama; Takashi Fujikura

The proliferation of MCF-7, human breast cancer cell line, was stimulated by testosterone and estradiol. The aromatase activity in MCF-7 cells, which catalysed the conversion of testosterone to estradiol, was inhibited by a novel non-steroidal aromatase inhibitor, YM5111, with the IC50 of 0.2 nM, indicating that its inhibitory activity was 5.5 times more potent than that of CGS 16949A. YM511 inhibited the proliferation of MCF-7 stimulated by testosterone but did not inhibit the cell proliferation stimulated by estradiol. The IC50 values of YM511 for cell growth and DNA synthesis were 0.13 nM and 0.18 nM, respectively, demonstrating that YM511 was about 3-5 times more potent than CGS 16949A and had no anti-estrogenic or cytotoxic activity. YM511 significantly inhibited testosterone-stimulated transcriptional activation of estrogen-responsive element (ERE) in MCF-7 cells transfected transiently with ERE-luciferase reporter plasmid. The IC50 of YM511 for transactivation was 0.36 nM, suggesting that its inhibitory potency was comparable to the inhibition of aromatase activity of MCF-7 cells. These data may indicate that the inhibition by YM511 of cell proliferation of MCF-7 is attributed to the decreased production of estrogen due to the inhibition of aromatase activity. YM511 may be useful in the treatment of estrogen-dependent cancers.


Cancer Research | 2014

Abstract 1728: ASP8273, a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations

Hideki Sakagami; Satoshi Konagai; Hiroko Yamamoto; Hiroaki Tanaka; Takahiro Matsuya; Masamichi Mori; Hiroyuki Koshio; Masatoshi Yuri; Masaaki Hirano; Sadao Kuromitsu

Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA BACKGROUND: Reversible EGFR TKIs, gefitinib and erlotinib, have shown antitumor efficacy in NSCLC patients with activating mutations in EGFR kinase domain. But the clinical efficacy of these agents is limited by the development of acquired drug resistance, which is most commonly caused by T790M resistance mutation in EGFR. This mutation has been detected in approximately 50% to 60% of patients. The 2nd generation irreversible EGFR inhibitors inhibit EGFR with T790M, but their clinical efficacy to NSCLC patients with T790M appears to be limited due to severe adverse effects caused by concomitant WT EGFR inhibition. Therefore, an EGFR TKI which inhibits T790M mutant EGFR selectively with less activity against WT EGFR may be beneficial. Here we report ASP8273, a novel, small molecule EGFR TKI that inhibits the kinase activity of EGFR containing the activating and T790M resistance mutations with less activity against WT EGFR. METHODS: The inhibitory effect and the selectivity of ASP8273 were evaluated against mutant EGFR (L858R, del ex19, L858R/T790M and del ex19/T790M) and WT EGFR using in vitro enzymatic and cell-based assay. Binding mode of ASP8273 to EGFR was assessed by mass spectrometry. Antitumor activity of ASP8273 was evaluated in xenograft models using PC-9 (del ex19), HCC827 (del ex19), NCI-H1975 (L858R/T790M) and PC-9ER (Erlotinib Resistant)(del ex19/T790M) NSCLC cells. RESULTS: ASP8273 inhibited mutant EGFR containing del ex19 or L858R activating mutations as well as the T790M resistance mutation with lower IC50 values than WT EGFR. Mass spectrometry analysis revealed that ASP8273 is covalently bound to a mutant EGFR(L858R/T790M) via C797 in the kinase domain of EGFR. In NCI-H1975 cells, ASP8273 induced long-lasting inhibition of EGFR phosphorylation for 24 h after washout of compound. In assays using endogenously EGFR-dependent cells, ASP8273 inhibited the growth of PC-9(del ex19), HCC827(del ex19), NCI-H1975(del ex19/T790M) and PC-9ER(del ex19/T790M) with IC50 values of 8-33 nM, more potently than that of NCI-H1666(WT) with IC50 value of 230 nM. In mouse xenograft studies, ASP8273 induced tumor regression in NCI-H1975 (L858R/T790M), HCC827 (del ex19) and PC-9 (del ex19) xenograft models by repeated oral dosing in a dose-dependent manner. Dosing schedules did not affect the efficacy of ASP8273. In an NCI-H1975 xenograft model, complete regression of tumor was achieved after 14-days of ASP8273 treatment. Complete regression was maintained in 50% of mice more than 85 days after cessation of ASP8273 treatment. CONCLUSIONS: ASP8273 inhibits the growth of NSCLC cells with EGFR activating and T790M resistance mutations with evidence of tumor regression. Therefore, ASP8273 may show therapeutic efficacy in NSCLC patients with EGFR mutations. Clinical trials of ASP8273 in NSCLC patients are planned in the US/EU and Asia. Citation Format: Hideki Sakagami, Satoshi Konagai, Hiroko Yamamoto, Hiroaki Tanaka, Takahiro Matsuya, Masamichi Mori, Hiroyuki Koshio, Masatoshi Yuri, Masaaki Hirano, Sadao Kuromitsu. ASP8273, a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 1728. doi:10.1158/1538-7445.AM2014-1728


Leukemia Research | 2013

Combination of YM155, a survivin suppressant with a STAT3 inhibitor: A new strategy to treat diffuse large B-cell lymphoma

Naoki Kaneko; Aya Kita; Kentaro Yamanaka; Masamichi Mori

Survivin and STAT3 pathway have been reported to be important for the growth of diffuse large B-cell lymphoma (DLBCL) cells. Here we investigated the antitumor activity of sepantronium bromide (YM155), a survivin suppressant, in combination with STAT3 inhibitors in DLBCL cell lines in vitro. YM155 synergistically enhanced STAT3 inhibitors (AG490 and STA-21)-induced apoptosis in DLBCL cell lines. Moreover, rituximab, which shows inhibitory activity against STAT3, also sensitized DLBCL cell lines to YM155 regardless of sensitivity to rituximab. These results suggest that combining the inhibition of survivin with STAT3 pathway is an attractive and potentially effective way for the treatment of DLBCL.

Collaboration


Dive into the Masamichi Mori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge