Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masanao Murakami is active.

Publication


Featured researches published by Masanao Murakami.


Journal of Virology | 2005

Induction of Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen by the Lytic Transactivator RTA: a Novel Mechanism for Establishment of Latency

Ke Lan; Daniel A. Kuppers; Subhash C. Verma; Nikhil Sharma; Masanao Murakami; Erle S. Robertson

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV) is the etiological agent contributing to development of Kaposis sarcoma, primary effusion lymphoma, and multicentric Castleman desease. Following primary infection, latency is typically established. However, the mechanism by which KSHV establishes latency is not understood. We have reported that the latency-associated nuclear antigen (LANA) can repress RTA (for replication and transcription activator) expression by down-regulating its promoter. In this study, we show that RTA is associated with the virion particle. We also show that RTA can activate the LANA promoter and induce LANA expression in transient reporter assays. Additionally, the transcription of RTA correlates with LANA expression in the early stages of de novo infection of KSHV, and induction of LANA transcription is responsive to induction of RTA with an inducible system. This induction in LANA transcription was dependent on recombination signal sequence binding protein Jκ (RBP-Jκ), as a RBP-Jκ-deficient cell line was significantly delayed and inefficient in LANA transcription with expression of RTA. These studies suggest that RTA contributes to establishment of KSHV latency by activating LANA expression in the early stages of infection by utilizing the major effector of the Notch signaling pathway RBP-Jκ. This describes a feedback mechanism by which LANA and RTA can regulate each other and is likely to be a key event in the establishment of KSHV latency.


Cancer Biology & Therapy | 2010

Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention

Abhik Saha; Rajeev Kaul; Masanao Murakami; Erle S. Robertson

Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.


Journal of Virology | 2009

Epstein-Barr Virus Nuclear Antigen 3C Augments Mdm2-Mediated p53 Ubiquitination and Degradation by Deubiquitinating Mdm2

Abhik Saha; Masanao Murakami; Pankaj Kumar; Bharat Bajaj; Karen Sims; Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is one of the essential latent antigens for primary B-cell transformation. Previous studies established that EBNA3C facilitates degradation of several vital cell cycle regulators, including the retinoblastoma (pRb) and p27KIP proteins, by recruitment of the SCFSkp2 E3 ubiquitin ligase complex. EBNA3C was also shown to be ubiquitinated at its N-terminal residues. Furthermore, EBNA3C can bind to and be degraded in vitro by purified 20S proteasomes. Surprisingly, in lymphoblastoid cell lines, EBNA3C is extremely stable, and the mechanism for this stability is unknown. In this report we show that EBNA3C can function as a deubiquitination enzyme capable of deubiquitinating itself in vitro as well as in vivo. Functional mapping using deletion and point mutational analysis showed that both the N- and C-terminal domains of EBNA3C contribute to the deubiquitination activity. We also show that EBNA3C efficiently deubiquitinates Mdm2, an important cellular proto-oncogene, which is known to be overexpressed in several human cancers. The data presented here further demonstrate that the N-terminal domain of EBNA3C can bind to the acidic domain of Mdm2. Additionally, the N-terminal domain of EBNA3C strongly stabilizes Mdm2. Importantly, EBNA3C simultaneously binds to both Mdm2 and p53 and can form a stable ternary complex; however, in the presence of p53 the binding affinity of Mdm2 toward EBNA3C was significantly reduced, suggesting that p53 and Mdm2 might share a common overlapping domain of EBNA3C. We also showed that EBNA3C enhances the intrinsic ubiquitin ligase activity of Mdm2 toward p53, which in turn facilitated p53 ubiquitination and degradation. Thus, manipulation of the oncoprotein Mdm2 by EBNA3C potentially provides a favorable environment for transformation and proliferation of EBV-infected cells.


Virology | 2009

Epstein–Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

Fuming Yi; Abhik Saha; Masanao Murakami; Pankaj Kumar; Jason S. Knight; Qiliang Cai; Tathagata Choudhuri; Erle S. Robertson

The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF(Skp2), cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53(-/-)) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.


Journal of Virology | 2007

Epstein-Barr Virus Latent Nuclear Antigens Can Induce Metastasis in a Nude Mouse Model

Rajeev Kaul; Masanao Murakami; Tathagata Choudhuri; Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. The EBV critical latent antigens EBNA1 and EBNA3C interact with Nm23-H1, a known suppressor of cell migration and tumor metastasis. This interaction is critical for the regulation of downstream cellular genes involved in tumorigenesis and cell migration. The significance of these interactions was determined in nude mice using cancer cells expressing both EBV antigens and Nm23-H1. The EBV antigens promoted the growth of transformed cells in vivo, but their expression was less critical during the later stage of tumor development. The expression of Nm23-H1 affected the growth of cancer cells and suppressed their metastatic potential. This effect was effectively rescued by the expression of both EBV antigens. Interestingly, the prometastatic potential of EBNA3C was greater than that of EBNA1, which triggered a dramatic immune response, as indicated by increased spleen size and development of ascites in the mice. These studies now bridge the expression of the EBV antigens with tumorigenesis and metastasis and widen the range of potential targets for development of therapies for EBV-associated malignancies.


Journal of Virology | 2005

Epstein-Barr Virus Nuclear Antigen 1 Interacts with Nm23-H1 in Lymphoblastoid Cell Lines and Inhibits Its Ability To Suppress Cell Migration

Masanao Murakami; Ke Lan; Chitra Subramanian; Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is expressed in the majority of latency programs in EBV-infected cells and is critical for the maintenance of EBV episomes in the infected cells. EBNA1 is also known to be involved in transcriptional activation and regulates expression of the EBV latent genes, including the EBNAs and LMP1. Thus, EBNA1 is a multifunctional protein with critical functions required for the persistence of the viral genome over successive generations, producing new daughter cells from the infected cell. We identify EBNA1 here as an interacting EBNA with the known suppressor of metastasis and cell migration, Nm23-H1. Nm23-H1 inhibits cell migration when expressed in cancer cells. We show that EBNA1 associates with Nm23-H1 in EBV-infected cells in vitro, as well as in lymphoblastoid cell lines (LCLs). Nm23-H1 predominantly localizes to the cytoplasm in BJAB and 293T cells; however, upon expression of EBNA1, Nm23-H1 is translocated to the nucleus in similar compartments to EBNA1, suggesting a potential functional role that is linked to EBNA1. Convincingly, in EBV-transformed LCLs Nm23-H1 is localized predominantly to the nucleus and colocalizes to similar compartment as EBNA1. Further, we tested the effects of EBNA1 on Nm23-H1-mediated suppression of cell migration and showed that EBNA1 rescues the suppression of cell migration mediated by Nm23-H1. These in vitro studies suggest that EBNA1 plays a critical role in regulating the activities of Nm23-H1, including cell migration, through a mechanism which involves direct interaction of this major regulator in EBV-infected cells.


PLOS ONE | 2009

Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

Sabyasachi Halder; Masanao Murakami; Subhash C. Verma; Pankaj Kumar; Fuming Yi; Erle S. Robertson

Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection.


Journal of Virology | 2007

A Potential α-Helix Motif in the Amino Terminus of LANA Encoded by Kaposi's Sarcoma-Associated Herpesvirus Is Critical for Nuclear Accumulation of HIF-1α in Normoxia

Qiliang Cai; Masanao Murakami; Huaxin Si; Erle S. Robertson

ABSTRACT Hypoxia-inducible factor 1 (HIF-1) is a ubiquitously expressed transcriptional regulator involved in induction of numerous genes associated with angiogenesis and tumor growth. Kaposis sarcoma, associated with increased angiogenesis, is a highly vascularized, endothelial cell-derived tumor. Previously, we have shown that the latency-associated nuclear antigen (LANA) encoded by Kaposis sarcoma-associated herpesvirus (KSHV) targets the HIF-1α suppressors von Hippel-Lindau protein and p53 for degradation via its suppressor of cytokine signaling-box motif, which recruits the EC5S ubiquitin complex. Here we further show that HIF-1α was aberrantly accumulated in KSHV latently infected primary effusion lymphoma (PEL) cells, as well as HEK293 cells infected with KSHV, and also show that a potential α-helical amino-terminal domain of LANA was important for HIF-1α nuclear accumulation in normoxic conditions. Moreover, we have now determined that this association was dependent on the residues 46 to 89 of LANA and the oxygen-dependent degradation domain of HIF-1α. Introduction of specific small interfering RNA against LANA into PEL cells also resulted in a diminished nuclear accumulation of HIF-1α. Therefore, these data show that LANA can function not only as an inhibitor of HIF-1α suppressor proteins but can also induce nuclear accumulation of HIF-1α during KSHV latent infection.


PLOS Pathogens | 2011

Epstein-Barr Virus Nuclear Antigen 3C Facilitates G1-S Transition by Stabilizing and Enhancing the Function of Cyclin D1

Abhik Saha; Sabyasachi Halder; Santosh Kumar Upadhyay; Jie Lu; Pankaj Kumar; Masanao Murakami; Qiliang Cai; Erle S. Robertson

EBNA3C, one of the Epstein-Barr virus (EBV)-encoded latent antigens, is essential for primary B-cell transformation. Cyclin D1, a key regulator of G1 to S phase progression, is tightly associated and aberrantly expressed in numerous human cancers. Previously, EBNA3C was shown to bind to Cyclin D1 in vitro along with Cyclin A and Cyclin E. In the present study, we provide evidence which demonstrates that EBNA3C forms a complex with Cyclin D1 in human cells. Detailed mapping experiments show that a small N-terminal region which lies between amino acids 130–160 of EBNA3C binds to two different sites of Cyclin D1- the N-terminal pRb binding domain (residues 1–50), and C-terminal domain (residues 171–240), known to regulate Cyclin D1 stability. Cyclin D1 is short-lived and ubiquitin-mediated proteasomal degradation has been targeted as a means of therapeutic intervention. Here, we show that EBNA3C stabilizes Cyclin D1 through inhibition of its poly-ubiquitination, and also increases its nuclear localization by blocking GSK3β activity. We further show that EBNA3C enhances the kinase activity of Cyclin D1/CDK6 which enables subsequent ubiquitination and degradation of pRb. EBNA3C together with Cyclin D1-CDK6 complex also efficiently nullifies the inhibitory effect of pRb on cell growth. Moreover, an sh-RNA based strategy for knock-down of both cyclin D1 and EBNA3C genes in EBV transformed lymphoblastoid cell lines (LCLs) shows a significant reduction in cell-growth. Based on these results, we propose that EBNA3C can stabilize as well as enhance the functional activity of Cyclin D1 thereby facilitating the G1-S transition in EBV transformed lymphoblastoid cell lines.


Journal of Virology | 2007

The ATM/ATR signaling effector Chk2 is targeted by Epstein-Barr virus nuclear antigen 3C to release the G2/M cell cycle block.

Tathagata Choudhuri; Subhash C. Verma; Ke Lan; Masanao Murakami; Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) infects most of the human population and persists in B lymphocytes for the lifetime of the host. The establishment of latent infection by EBV requires the expression of a unique repertoire of genes. The product of one of these viral genes, the EBV nuclear antigen 3C (EBNA3C), is essential for the growth transformation of primary B lymphocytes in vitro and can regulate the transcription of a number of viral and cellular genes important for the immortalization process. This study demonstrates an associated function of EBNA3C which involves the disruption of the G2/M cell cycle checkpoint. We show that EBNA3C-expressing lymphoblastoid cell lines treated with the drug nocodazole, which is known to block cells at the G2/M transition, did not show a G2/M-specific checkpoint arrest. Analyses of the cell cycles of cells expressing EBNA3C demonstrated that the expression of this essential EBV nuclear antigen is capable of releasing the G2/M checkpoint arrest induced by nocodazole. This G2/M arrest in response to nocodazole was also abolished by caffeine, suggesting an involvement of the ATM/ATR signaling pathway in the regulation of this cell cycle checkpoint. Importantly, we show that the direct interaction of EBNA3C with Chk2, the ATM/ATR signaling effector, is responsible for the release of this nocodazole-induced G2/M arrest and that this interaction leads to the serine 216 phosphorylation of Cdc25c, which is sequestered in the cytoplasm by 14-3-3. Overall, our data suggest that EBNA3C can directly regulate the G2/M component of the host cell cycle machinery, allowing for the release of the checkpoint block.

Collaboration


Dive into the Masanao Murakami's collaboration.

Top Co-Authors

Avatar

Erle S. Robertson

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ke Lan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pankaj Kumar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharat Bajaj

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abhik Saha

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge