Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masanori Hirashima is active.

Publication


Featured researches published by Masanori Hirashima.


Nature Medicine | 2009

Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth

Romulo Albuquerque; Takahiko Hayashi; Won Gil Cho; Mark E. Kleinman; Sami Dridi; A. Takeda; Judit Z. Baffi; Kiyoshi Yamada; Hiroki Kaneko; Martha G. Green; Joseph Chappell; Jörg Wilting; Herbert A. Weich; Satoru Yamagami; Shiro Amano; Nobuhisa Mizuki; Jonathan S. Alexander; Martha L. Peterson; Rolf A. Brekken; Masanori Hirashima; Seema Capoor; Tomohiko Usui; Balamurali K. Ambati; Jayakrishna Ambati

Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessel growth can lead to myriad diseases. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessel growth has not to our knowledge been previously described. We report the existence of a splice variant of the gene encoding vascular endothelial growth factor receptor-2 (Vegfr-2) that encodes a secreted form of the protein, designated soluble Vegfr-2 (sVegfr-2), that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c function. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without affecting blood vasculature. Administration of sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 thus acts as a molecular uncoupler of blood and lymphatic vessels; modulation of sVegfr-2 might have therapeutic effects in treating lymphatic vascular malformations, transplantation rejection and, potentially, tumor lymphangiogenesis and lymphedema (pages 993–994)


Journal of Clinical Investigation | 2012

The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice

Shigetomo Fukuhara; Szandor Simmons; Shunsuke Kawamura; Asuka Inoue; Yasuko Orba; Takeshi Tokudome; Yuji Sunden; Yuji Arai; Kazumasa Moriwaki; Junji Ishida; Akiyoshi Uemura; Hiroshi Kiyonari; Takaya Abe; Akiyoshi Fukamizu; Masanori Hirashima; Hirofumi Sawa; Junken Aoki; Masaru Ishii; Naoki Mochizuki

The bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) promotes the egress of newly formed T cells from the thymus and the release of immature B cells from the bone marrow. It has remained unclear, however, where and how S1P is released. Here, we show that in mice, the S1P transporter spinster homolog 2 (Spns2) is responsible for the egress of mature T cells and immature B cells from the thymus and bone marrow, respectively. Global Spns2-KO mice exhibited marked accumulation of mature T cells in thymi and decreased numbers of peripheral T cells in blood and secondary lymphoid organs. Mature recirculating B cells were reduced in frequency in the bone marrow as well as in blood and secondary lymphoid organs. Bone marrow reconstitution studies revealed that Spns2 was not involved in S1P release from blood cells and suggested a role for Spns2 in other cells. Consistent with these data, endothelia-specific deletion of Spns2 resulted in defects of lymphocyte egress similar to those observed in the global Spns2-KO mice. These data suggest that Spns2 functions in ECs to establish the S1P gradient required for T and B cells to egress from their respective primary lymphoid organs. Furthermore, Spns2 could be a therapeutic target for a broad array of inflammatory and autoimmune diseases.


Journal of Biological Chemistry | 2010

Essential in Vivo Roles of the C-type Lectin Receptor CLEC-2 EMBRYONIC/NEONATAL LETHALITY OF CLEC-2-DEFICIENT MICE BY BLOOD/LYMPHATIC MISCONNECTIONS AND IMPAIRED THROMBUS FORMATION OF CLEC-2-DEFICIENT PLATELETS

Katsue Suzuki-Inoue; Osamu Inoue; Guo Ding; Satoshi Nishimura; Kazuya Hokamura; Koji Eto; Hirokazu Kashiwagi; Yoshiaki Tomiyama; Yutaka Yatomi; Kazuo Umemura; Yonchol Shin; Masanori Hirashima; Yukio Ozaki

CLEC-2 has been described recently as playing crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis. The snake venom rhodocytin is known as a strong platelet activator, and we have shown that this effect is mediated by CLEC-2 (Suzuki-Inoue, K., Fuller, G. L., García, A., Eble, J. A., Pöhlmann, S., Inoue, O., Gartner, T. K., Hughan, S. C., Pearce, A. C., Laing, G. D., Theakston, R. D., Schweighoffer, E., Zitzmann, N., Morita, T., Tybulewicz, V. L., Ozaki, Y., and Watson, S. P. (2006) Blood 107, 542–549). Podoplanin, which is expressed on the surface of tumor cells, is an endogenous ligand for CLEC-2 and facilitates tumor metastasis by inducing platelet aggregation. Mice deficient in podoplanin, which is also expressed on the surface of lymphatic endothelial cells, show abnormal patterns of lymphatic vessel formation. In this study, we report on the generation and phenotype of CLEC-2-deficient mice. These mice are lethal at the embryonic/neonatal stages associated with disorganized and blood-filled lymphatic vessels and severe edema. Moreover, by transplantation of fetal liver cells from Clec-2−/− or Clec-2+/+ embryos, we were able to demonstrate that CLEC-2 is involved in thrombus stabilization in vitro and in vivo, possibly through homophilic interactions without apparent increase in bleeding tendency. We propose that CLEC-2 could be an ideal novel target protein for an anti-platelet drug, which inhibits pathological thrombus formation but not physiological hemostasis.


Journal of The American Society of Nephrology | 2010

Glomerular Structure and Function Require Paracrine, Not Autocrine, VEGF–VEGFR-2 Signaling

Karen Sison; Vera Eremina; Hans J. Baelde; Wang Min; Masanori Hirashima; I. George Fantus; Susan E. Quaggin

VEGF is a potent vascular growth factor produced by podocytes in the developing and mature glomerulus. Specific deletion of VEGF from podocytes causes glomerular abnormalities including profound endothelial cell injury, suggesting that paracrine signaling is critical for maintaining the glomerular filtration barrier (GFB). However, it is not clear whether normal GFB function also requires autocrine VEGF signaling in podocytes. In this study, we sought to determine whether an autocrine VEGF-VEGFR-2 loop in podocytes contributes to the maintenance of the GFB in vivo. We found that induced, whole-body deletion of VEGFR-2 caused marked abnormalities in the kidney and also other tissues, including the heart and liver. By contrast, podocyte-specific deletion of the VEGFR-2 receptor had no effect on glomerular development or function even up to 6 months old. Unlike cell culture models, enhanced expression of VEGF by podocytes in vivo caused foot process fusion and alterations in slit diaphragm-associated proteins; however, inhibition of VEGFR-2 could not rescue this defect. Although VEGFR-2 was dispensable in the podocyte, glomerular endothelial cells depended on VEGFR-2 expression: postnatal deletion of the receptor resulted in global defects in the glomerular microvasculature. Taken together, our results provide strong evidence for dominant actions of a paracrine VEGF-VEGFR-2 signaling loop both in the developing and in the filtering glomerulus. VEGF produced by the podocyte regulates the structure and function of the adjacent endothelial cell.


Journal of Clinical Investigation | 2011

Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice

Yoko Fukushima; Mitsuhiro Okada; Hiroshi Kataoka; Masanori Hirashima; Yutaka Yoshida; Fanny Mann; Fumi Gomi; Kohji Nishida; Shin-Ichi Nishikawa; Akiyoshi Uemura

During development, the retinal vasculature grows toward hypoxic areas in an organized fashion. By contrast, in ischemic retinopathies, new blood vessels grow out of the retinal surfaces without ameliorating retinal hypoxia. Restoration of proper angiogenic directionality would be of great benefit to reoxygenize the ischemic retina and resolve disease pathogenesis. Here, we show that binding of the semaphorin 3E (Sema3E) ligand to the transmembrane PlexinD1 receptor initiates a signaling pathway that normalizes angiogenic directionality in both developing retinas and ischemic retinopathy. In developing mouse retinas, inhibition of VEGF signaling resulted in downregulation of endothelial PlexinD1 expression, suggesting that astrocyte-derived VEGF normally promotes PlexinD1 expression in growing blood vessels. Neuron-derived Sema3E signaled to PlexinD1 and activated the small GTPase RhoJ in ECs, thereby counteracting VEGF-induced filopodia projections and defining the retinal vascular pathfinding. In a mouse model of ischemic retinopathy, enhanced expression of PlexinD1 and RhoJ in extraretinal vessels prevented VEGF-induced disoriented projections of the endothelial filopodia. Remarkably, intravitreal administration of Sema3E protein selectively suppressed extraretinal vascular outgrowth without affecting the desired regeneration of the retinal vasculature. Our study suggests a new paradigm for vascular regeneration therapy that guides angiogenesis precisely toward the ischemic retina.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

VEGFR1 Tyrosine Kinase Signaling Promotes Lymphangiogenesis as Well as Angiogenesis Indirectly via Macrophage Recruitment

Masato Murakami; Yujuan Zheng; Masanori Hirashima; Toshio Suda; Yohei Morita; Jun Ooehara; Hideo Ema; Guo-Hua Fong

Objective—Angiogenesis and lymphangiogenesis are complex phenomena that involve the interplay of several growth factors and receptors. Recently, we have demonstrated that in Keratin-14 (K14) promoter-driven Vegf-A transgenic (Tg) mice, not only angiogenesis but also lymphangiogenesis is stimulated. However, the mechanism by which VEGFR1 is involved in lymphangiogenesis remains unclear. Methods and Results—To examine how important the tyrosine kinase (TK) of VEGFR1 is in lymphangiogenesis in K14 Vegf-A Tg mice, we crossed the K14 Vegf-A Tg mice with VEGFR1-TK–deficient mice to generate double mutant K14 Vegf-A Tg Vegfr1 tk−/− mice. K14 Vegf-A Tg Vegfr1 tk−/− mice exhibit a remarkable decrease in lymphangiogensis as well as angiogenesis in subcutaneous tissues. To address the mechanism underlying the decrease in lymphangiogensis, we investigated the recruitment of monocyte-macrophage-lineage cells into the skin. The recruitment of VEGFR1-expressing macrophages driven by VEGF-A was reduced in K14 Vegf-A Tg Vegfr1 tk−/− mice. Vegf-A Tg mice that received VEGFR1-TK–deficient bone marrow showed a reduction of macrophage recruitment, lymphangiogenesis and angiogenesis compared with those in K14 Vegf-A Tg mice. Conclusions—VEGFR1 signaling promotes lymphangiogenesis as well as angiogenesis mainly by increasing bone marrow–derived macrophage recruitment.


Journal of Biological Chemistry | 2012

Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells

Makoto Osada; Osamu Inoue; Guo Ding; Toshiaki Shirai; Hirotake Ichise; Kazuyoshi Hirayama; Katsuhiro Takano; Yutaka Yatomi; Masanori Hirashima; Hideki Fujii; Katsue Suzuki-Inoue; Yukio Ozaki

Background: Mice deficient in the platelet receptor CLEC-2 for podoplanin showed impaired blood/lymphatic vessel separation. Results: Functions of lymphatic endothelial cells are inhibited by platelet releasates and BMP-9, which we identified as a novel releasate. Conclusion: Granule contents including BMP-9 released upon platelet activation by CLEC-2-podoplanin interaction may contribute to the separation in vivo. Significance: We proposed a novel mechanism of platelet-mediated blood/lymphatic vessel separation. The platelet activation receptor CLEC-2 plays crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis, although its role in thrombosis/hemostasis remains controversial. An endogenous ligand for CLEC-2, podoplanin, is expressed in lymphatic endothelial cells (LECs). We and others have reported that CLEC-2-deficiency is lethal at mouse embryonic/neonatal stages associated with blood-filled lymphatics, indicating that CLEC-2 is essential for blood/lymphatic vessel separation. However, its mechanism, and whether CLEC-2 in platelets is necessary for this separation, remains unknown. We found that specific deletion of CLEC-2 from platelets leads to the misconnection of blood/lymphatic vessels. CLEC-2+/+ platelets, but not by CLEC-2−/− platelets, inhibited LEC migration, proliferation, and tube formation but had no effect on human umbilical vein endothelial cells. Additionally, supernatants from activated platelets significantly inhibited these three functions in LECs, suggesting that released granule contents regulate blood/lymphatic vessel separation. Bone morphologic protein-9 (BMP-9), which we found to be present in platelets and released upon activation, appears to play a key role in regulating LEC functions. Only BMP-9 inhibited tube formation, although other releasates including transforming growth factor-β and platelet factor 4 inhibited proliferation and/or migration. We propose that platelets regulate blood/lymphatic vessel separation by inhibiting the proliferation, migration, and tube formation of LECs, mainly because of the release of BMP-9 upon activation by CLEC-2/podoplanin interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Trophoblast expression of fms-like tyrosine kinase 1 is not required for the establishment of the maternal-fetal interface in the mouse placenta.

Masanori Hirashima; Yong Lu; Lois Byers; Janet Rossant

Fms-like tyrosine kinase 1 (Flt1)/vascular endothelial growth factor (VEGF) receptor 1, a receptor for VEGF-A and placental growth factor, is expressed in the spongiotrophoblast layer that segregates the maternal and fetal vasculature in the mouse placenta. A soluble form of Flt1 (sFlt1) produced in the mouse and human placenta can also be detected in the maternal blood. Levels of maternal sFlt1 are elevated in preeclampsia, suggesting that placental sFlt1 plays roles in regulating the maternal vasculature during pregnancy. However, it remains to be determined whether placental Flt1/sFlt1 serves as a regulator of VEGF-A activity in the placenta per se. Here, we investigated the placental development in Flt1-deficient mice. Flt1 is expressed in a subpopulation of ectoplacental cone cells and later marks the spongiotrophoblast cells, peri/endovascular trophoblast cells, and trophoblast glycogen cells. The labyrinth of Flt1lacZ/lacZ placentae lacked the fetal capillary network because of a defect in allantoic mesoderm invasion. To address whether the absence of Flt1 in the trophoblast alone affects placental development, we investigated chimeric placentae comprised of Flt1lacZ/lacZ trophoblast and Flt1+/+ mesoderm, generated by tetraploid aggregation. Fetal growth was supported normally, and no defect in the formation of placental circulation into the maternal spiral artery or invasion of peri/endovascular trophoblast was detected. These findings indicate that trophoblast-derived Flt1/sFlt1 is dispensable for the initial establishment of the maternal–fetal interface in the mouse placenta. Targeting maternal sFlt1 levels for treatment of preeclampsia may thus be possible without affecting the proper formation of the placenta.


Journal of Clinical Investigation | 2008

Leukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in mice.

Yoshiaki Kubota; Masanori Hirashima; Kazuo Kishi; Colin L. Stewart; Toshio Suda

To meet tissue requirements for oxygen, capillaries must be properly distributed without excess or shortage. In this process, tissue oxygen concentration is well known to determine capillary density via the hypoxia-induced cascade, in which HIFs and VEGF play key roles. However, some additional mechanisms modulating this cascade are suggested to be involved in precise capillary network formation. Here, we showed that leukemia inhibitory factor (LIF) was predominantly expressed in developing endothelium, while its receptor was expressed in surrounding cells such as retinal astrocytes. The retinas of Lif(-/-) mice displayed increased microvessel density accompanied by sustained tip cell activity, due to increased VEGF expression by astrocytes in the vascularized area. Lif(-/-) mice resisted hyperoxygen insult in the oxygen-induced retinopathy model, whereas they paradoxically had increased numbers of neovascular tufts. In an in vitro study, LIF inhibited hypoxia-induced VEGF expression and proliferation in cultured astrocytes. Lif(-/-) mice also exhibited similarly increased microvessel density and upregulated VEGF in various tissues outside the retina. Together, these findings suggest that tissues and advancing vasculature communicate to ensure adequate vascularization using LIF as well as oxygen, which suggests a new strategy for antiangiogenic therapy in human diseases such as diabetic retinopathy and cancer.


Anatomical Science International | 2009

Regulation of endothelial cell differentiation and arterial specification by VEGF and Notch signaling

Masanori Hirashima

Analysis of molecular and cellular mechanisms underlying vascular development in vertebrates indicates that initially vasculogenesis occurs when a primary capillary plexus forms de novo from endothelial cell precursors derived from nascent mesodermal cells. Transplantation experiments in avian embryos demonstrate that embryonic endothelial cells originate from two different mesodermal lineages: splanchnic mesoderm and somites. Genetic analysis of mouse and zebrafish reveals that vascular endothelial growth factor (VEGF)/Flk1 and Notch signaling play crucial roles throughout embryonic vascular development. VEGFA plays a major role in endothelial cell proliferation, migration, survival, and regulation of vascular permeability. Flk1, the primary VEGFA receptor, is the earliest marker of the developing endothelial lineage and is essential for endothelial differentiation during vasculogenesis. Notch signaling has been demonstrated to directly induce arterial endothelial differentiation. Recent studies suggest that Notch signaling is activated downstream of VEGF signaling and negatively regulates VEGF-induced angiogenesis and suppresses aberrant vascular branching morphogenesis. In addition to altering endothelial cell fate through Notch activation, VEGFA directly guides endothelial cell migration in an isoform-dependent manner, modifying vascular patterns. Interestingly, genetic studies in mice show that many molecules involved in VEGF or Notch signaling must be tightly regulated for proper vascular formation. Taken together, VEGF and Notch signaling apparently coordinate vascular patterning by regulating each other.

Collaboration


Dive into the Masanori Hirashima's collaboration.

Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-Ichi Nishikawa

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Osamu Inoue

University of Yamanashi

View shared research outputs
Researchain Logo
Decentralizing Knowledge