Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masanori Iwai is active.

Publication


Featured researches published by Masanori Iwai.


Journal of Cerebral Blood Flow and Metabolism | 2002

Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia

Masanori Iwai; Keiko Sato; Nobuhiko Omori; Isao Nagano; Yasuhiro Manabe; Mikio Shoji; Koji Abe

The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate detailed relations between these three steps after ischemia, the authors evaluated the three steps in the adult gerbil dentate gyrus (DG) after 5 minutes of transient global ischemia using bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), and neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) as markers for proliferation, migration, and differentiation, respectively. Bromodeoxyuridine-labeled cells increased approximately sevenfold, and PSA-NCAM–positive cells increased approximately threefold in the subgranular zone (SGZ) with a peak 10 days after ischemia. Bromodeoxyuridine-labeled cells with PSA-NCAM expression were first detected both in the SGZ and the granule cell layer (GCL) 20 days after ischemia and gradually decreased after that, whereas BrdU-labeled cells with NeuN gradually increased in the GCL until 60 days after ischemia. A few BrdU-labeled cells with GFAP expression were detected in DG after ischemia; no PSA-NCAM–positive cells with GFAP expression were detected, but the radial processes of glial cells were partly in contact with PSA-NCAM–positive cell bodies and dendrites. These results suggest that neural stem cell proliferation begins at the SGZ, and that the cells then migrate into the GCL and differentiate mainly into neuronal cells. The majority of these three steps finished in 2 months after transient global ischemia.


Journal of Cerebral Blood Flow and Metabolism | 2003

Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils.

Masanori Iwai; Keiko Sato; Hiroshi Kamada; Nobuhiko Omori; Isao Nagano; Mikio Shoji; Koji Abe

The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate their detailed relations after ischemia, the three steps were comprehensively evaluated, in the subventricular zone (SVZ) through the rostral migratory stream (RMS) to the olfactory bulb (OB), in adult gerbil brain after 5 minutes of transient forebrain ischemia. Bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP) were used as markers for proliferation, migration, and differentiation, respectively. The number of BrdU-labeled cells that coexpressed PSA-NCAM and the size of PSA-NCAM–positive cell colony increased in the SVZ with a peak at 10 d after transient ischemia. In the RMS, the number of BrdU-labeled cells that coexpressed PSA-NCAM increased, with a delayed peak at 30 d, when the size of RMS itself became larger and the number of surrounding GFAP-positive cells increased. In the OB, BrdU + NeuN double positive cells were detected at 30 and 60 d. NeuN staining and terminal deoxynucleotidyl dUTP nick-end labeling staining showed no neuronal cell loss around the SVZ, and in the RMS and the OB after transient ischemia. These findings indicate that transient forebrain ischemia enhances neural stem cell proliferation in the SVZ without evident neuronal cell loss, and has potential neuronal precursor migration with activation of GFAP-positive cells through the RMS to the OB.


Brain Research | 2002

Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat

W.R. Zhang; Keiko Sato; Masanori Iwai; Isao Nagano; Yasuhiro Manabe; Koji Abe

The time dependent influence of adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) gene (Ad-GDNF) was examined after 90 min of transient middle cerebral artery occlusion (MCAO) in rats. Treatment with Ad-GDNF significantly reduced the infarct volume when immediately administered after the reperfusion, but became insignificant when administered at 1 h after the reperfusion as were the cases treated with vehicle- and adenoviral vector containing the E. coli lacZ gene (Ad-LacZ)-treated groups. The protective effect of GDNF was related to the significant reduction of the number of TUNEL positive cells as well as immunohistochemical positive cells for active caspase-3 but not -9. These results showed that exogenous GDNF gene transfer successfully reduced the infarct size in a time-dependant manner by suppressing active caspase-3 but not active caspase-9. However, the therapeutic time window was shorter than the effect of GDNF protein itself previously reported.


Brain Research | 2001

Time dependent amelioration against ischemic brain damage by glial cell line-derived neurotrophic factor after transient middle cerebral artery occlusion in rat

W.R. Zhang; Takeshi Hayashi; Masanori Iwai; Isao Nagano; Keiko Sato; Yasuhiro Manabe; Koji Abe

Time dependent influence of glial cell line-derived neurotrophic factor (GDNF) was examined after 90 min of transient middle cerebral artery occlusion (MCAO) in rats. Treatment with GDNF significantly reduced the infarct volume stained with 2,3,5-triphenyltetrazolium chloride (TTC) when GDNF was topically applied at 0 and 1 h of reperfusion, but became insignificant at 3 h as compared to vehicle group. The protective effect of GDNF was closely related to the significant reduction of the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL) positive cells as well as immunofluorescently positive cells for active forms of caspases, especially active caspase-3 but not -9. Thus, the present study showed that topical application of GDNF significantly reduced infarct size in a time-dependent manner, while the therapeutic time window was shorter than other chemical compounds such as an NMDA receptor antagonist (MK-801) and a free radical scavenger (alpha-phenyl-tert-butyl-nitrone, PBN). The effect of GDNF was stronger in suppressing active caspase-3 than active caspase-9.


Brain Research | 2005

Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury.

Takeshi Hayashi; Masanori Iwai; Tomoaki Ikeda; Guang Jin; Kentaro Deguchi; Shoko Nagotani; Hanzhe Zhang; Yoshihide Sehara; Isao Nagano; Mikio Shoji; Tsuyomu Ikenoue; Koji Abe

Ischemia/hypoxia (I/H) causes severe perinatal brain disorders such as cerebral palsy. The neonatal brain possesses much plasticity, and to enhance new cell production would be an innovative means of therapy for such disorders. In order to elucidate the dynamic changes of neural progenitor cells in the neonatal brain after ischemia, we investigated new cells production in the subventricular zone and subsequent migration of these cells to the injured area. Newly produced cells were confirmed by incorporation of bromodeoxyuridine (BrdU), and attempt for differentiation was investigated by immunohistochemistry for molecular markers of each cellular lineage. In the sham-control brain, there were many BrdU-labeled cells which gradually decreased as the animal becomes older. Many of these cells were oligodendroglial progenitor or microglial cells. Although there were only few neuronal cells labeled for BrdU in the sham-control, they dramatically increased after I/H. They were located at just beneath the subventricular zone where the progenitor cells reside and to the injured area, indicating that newly produced cells migrated to the infarct region and differentiated into neuronal precursor cells in order to compensate the lost neural cells. We found that BrdU-labeled astroglial, oligodendroglial progenitor, and microglial cells were also increased after I/H, suggesting that they also play active roles in recovery. Progenitor cells may have potential for treating perinatal brain disorders.


Brain Research | 2001

Temporal and spatial differences of PSA-NCAM expression between young-adult and aged rats in normal and ischemic brains.

Keiko Sato; Takeshi Hayashi; Chihoko Sasaki; Masanori Iwai; Feng Li; Yasuhiro Manabe; Tatsunori Seki; Kouji Abe

Highly polysialylated neural cell adhesion molecule (PSA-NCAM) is transiently expressed specifically in newly generated cells, and is important for migration and neurite outgrowth. To investigate the effect of aging on the migration of neural stem cell (NSC) after brain ischemia, the spatiotemporal expressions of immunoreactive PSA-NCAM were examined at 4 h or 1, 3 or 7 days after 90 min of middle cerebral artery occlusion (MCAO) in the young-adult or aged rats. In the sham control brain, PSA-NCAM staining was slightly observed both in dorsal and ventral parts of subventricular zone (SVZ) in the aged brain, but only in the dorsal part of SVZ in the young brain. After transient MCAO, immunoreactivity for PSA-NCAM increased in the number and the intensity in SVZ ipsilateral to MCAO in the young-adult brains and became the peak at 1 day, while that was at 3 days in the aged brains. These findings suggest that PSA-NCAM was located in different spatial distribution in normal condition between young and old rats. PSA-NCAM was induced after ischemia, and the temporal expression was also different after transient MCAO between young and older rats.


Brain Research | 2001

Induction of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in postischemic gerbil hippocampus mainly dissociated with neural stem cell proliferation.

Masanori Iwai; Takeshi Hayashi; Wen Ri Zhang; Keiko Sato; Yasuhiro Manabe; Koji Abe

We investigated a possible expression of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in gerbil hippocampus after 5 min of transient global ischemia in association to the proliferation of neural stem cell labeled with bromodeoxyuridine (BrdU). The number of PSA-NCAM positive cells increased in the granule cell layer (GCL) of dentate gyrus (DG) by 1.9 to 2.7-fold at 10 and 20 days after the reperfusion. The number of BrdU-labeled cells increased mainly in the subgranular zone of DG by 7.2 to 8.0-fold at 5 and 10 days after the reperfusion. Immunofluorescence for PSA-NCAM and BrdU showed that the majority of DG cells were not double labeled, while one or two cells per section were double labeled in the deepest portion of the GCL only at 10 days after the reperfusion. These results suggest different predominant spatial distribution and chronological change of PSA-NCAM positive and BrdU-labeled cells in DG after transient ischemia.


Brain Research | 2001

Expression of polysialylated neural cell adhesion molecule in rat brain after transient middle cerebral artery occlusion

Takeshi Hayashi; Tatsunori Seki; Keiko Sato; Masanori Iwai; Wen Ri Zhang; Yasuhiro Manabe; Koji Abe

The highly polysialylated form of neural cell adhesion molecule (PSA-NCAM) is important for neurite outgrowth. With this molecule as a marker of plastic change in neurons, we investigated its temporal expression in rat brain after transient middle cerebral artery (MCA) occlusion. In sham-control brain, only subependymal neurons showed a positive immunoreactivity for PSA-NCAM. After 90 min of transient MCA occlusion, neurons in the piriform cortex began to be positively stained at 1 h, while neurons in the cortex and caudate of the MCA territory became positive after 8 h. The stainings persisted for 1 and 3 days after reperfusion. The present results indicate that neurons in the cerebral cortex and caudate have the capability of plastic change in the adult brain, and that those in the piriform cortex rapidly undergo plastic change probably in response to transneuronal injury.


Neurological Research | 2006

Temporal profile of neural stem cell proliferation in the subventricular zone after ischemia/hypoxia in the neonatal rat brain

Masanori Iwai; Tomoaki Ikeda; Takeshi Hayashi; Keiko Sato; Tetsuya Nagata; Isao Nagano; Mikio Shoji; Tsuyomu Ikenoue; Koji Abe

Abstract Objectives: Ischemia/hypoxia (I/H) causes severe neonatal brain injury, such as periventricular leukomaracia and hypoxic/ischemic encephalopathy. Neural stem cell research could lead to a treatment for such disorders. In order to elucidate the dynamic changes in neural stem cells in the neonatal brain after I/H, we investigated the proliferation of new cells in the subventricular zone (SVZ). Methods: Seven-day-old Wister rats were subjected to ligation of the left carotid artery followed by 2 hours of hypoxic stress (8% O2 and 92% N2, at 33°C). In order to elucidate the dynamic change of neural stem cells in the SVZ, single bromodeoxyuridine (BrdU; 50 mg/kg) was administered 2 hours before death 1, 7, 14 and 21 days after I/H. Immunohistochemical and immunofluorescent studies for BrdU and doublecortin (DCX) were carried out. As a control, a group of rats was subjected to sham surgery (incision of skin, but no ligation of the carotid artery) and no I/H. Results: The numbers of BrdU-labeled cells in the SVZ, for both the ipsilateral side and the contralateral side of the I/H brain, were twice the level of the control at 7 days after I/H, but the numbers for both sides returned to the control level at 21 days. In the ipsilateral side of the I/H brain, the number of BrdU-labeled cells in the SVZb (lining the upper wall of lateral ventricle) was 4-fold at 7 days and 15-fold at 21 days after I/H compared with the control level. This chronological pattern is very similar to the pattern for I/H results of the posterior periventricle (pPV). DCX appeared in most BrdU-labeled cells in the SVZb and pPV. Discussion: These findings indicate that I/H enhances neural stem cell proliferation in the SVZ, and some newborn cells migrate as neural precursors to the SVZb and pPV after I/H in the neonatal rat brain.


Neuroscience Research | 2003

Temporal and spatial changes of free cholesterol and neutral lipids in rat brain after transient middle cerebral artery occlusion

Hiroshi Kamada; Keiko Sato; Masanori Iwai; Wen Ri Zhang; Isao Nagano; Yasuhiro Manabe; Mikio Shoji; Koji Abe

In order to examine lipid metabolism in relation to neural process following brain ischemia, we investigated temporal and spatial changes of free cholesterol (FC) and neutral lipids (NLs) after 90 min of transient middle cerebral artery occlusion (MCAO). Filipin and Nile Red stainings were performed to detect mainly FC and NLs, respectively. Double stainings for Nile Red plus ED1, MAP2, or GFAP were performed in order to identify cell type of positive stainings. Filipin stanining decreased during 1-7 day and lost at 21 day after transient MCAO in the ischemic core, but did not change in the penumbra. Nile Red positive droplets reached the maximum at 7 day after transient MCAO and gradually decreased in the core, while the peak time delayed in the penumbra. MAP2 immunoreactivity lost at 7 day in the core, and increased in the penumbra during 7-56 day. Most Nile Red positive droplets were double positive for ED1 in the core, and were localized within GFAP positive cells in the penumbra. These results suggest that changes of FC and NLs are different temporally and spatially between the core and penumbra in relation to degenerative and regenerative neural processes following brain ischemia.

Collaboration


Dive into the Masanori Iwai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge