Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaru Kuroda is active.

Publication


Featured researches published by Masaru Kuroda.


Progress in Neurobiology | 1998

An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus

Masaru Kuroda; Junko Yokofujita; Kunio Murakami

Synaptic connectivity between the prefrontal cortex (PFC) and the mediodorsal thalamic nucleus (MD) of the rat has been investigated with the electron microscope after labeling both the pre- and postsynaptic elements. Prefrontal corticothalamic fibers end exclusively as small axon terminals with round synaptic vesicles (SR boutons), which make asymmetrical synaptic contacts with distal dendritic segments of MD neurons. Thalamocortical terminals from MD in PFC are also of the SR type and form asymmetrical synaptic contacts predominantly with dendritic spines arising from the apical or basal dendrites of pyramidal cells whose somata reside in layers III, V and VI. At least some pyramidal cells in layer III that receive MD afferents are callosal cells, whereas deep layer pyramidal cells projecting to MD receive directly some of the thalamocortical terminations from MD, suggesting that the recurrent loop to MD is monosynaptically mediated. Thus, taken together with recent evidence that both the PFC-MD and MD-PFC pathways are glutamatergic and excitatory, the cortical excitation exerted by afferent fibers from MD is transferred, not only back to MD itself through deep pyramidal cells, but also the contralateral prefrontal cortex via pyramidal cells in layer III of the ipsilateral prefrontal cortex. Concerning modulatory and inhibitory inputs, fibers to MD from the ventral pallidum and substantia nigra pars reticulata have been shown to be inhibitory and GABAergic. In addition, fibers from the ventral tegmental area preferentially make symmetrical membrane thickenings (i.e. inhibitory synapses) on deep pyramidal cells in PFC that receive synaptic endings from MD. From these morphological grounds, therefore, cells in the ventral pallidum, the substantia nigra pars reticulata and the ventral tegmental area may mediate, to some extent, an inhibitory effect on the reverberatory excitation between PFC and MD.


PLOS ONE | 2011

Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus.

Hiromasa Funato; Satoko Oda; Junko Yokofujita; Hiroaki Igarashi; Masaru Kuroda

Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a high-fat diet. In response to fasting, HDAC3 and −4 expression levels increased while HDAC10 and −11 levels decreased. Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and −8. Moreover, fasting decreased the number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial hypothalamus under different metabolic states.


European Journal of Neuroscience | 1996

The Convergence of Axon Terminals from the Mediodorsal Thalamic Nucleus and Ventral Tegmental Area on Pyramidal Cells in Layer V of the Rat Prelimbic Cortex

Masaru Kuroda; Kunio Murakami; Hiroaki Igarashi; Akiko Okada

We investigated the ultrastructural basis of the synaptic convergence of afferent fibres from the mediodorsal thalamic nucleus (MD) and the ventral tegmental area (VTA) on the prefrontal cortical neurons of the rat by examining the synaptic relationships between thalamocortical or tegmentocortical terminals labelled with anterograde markers [lesion‐induced degeneration or transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA—HRP)] and randomly selected unlabelled apical dendrites of layer V pyramidal cells in the prelimbic cortex. WGA—HRP‐labelled terminals from the VTA ranged in diameter from 0.7 to 2.8 μm and established synaptic contacts with large dendritic profiles, i.e. proximal segments of apical dendritic shafts and spines from layer V pyramidal cells. Symmetrical synapses, i.e. inhibitory synapses, were more often seen than asymmetrical ones. Degenerating terminals from the MD formed asymmetrical synapses on dendritic spines or occasionally on small dendritic shafts of apical dendrites from layer V pyramidal cells, which received tegmentocortical synapses, mostly within layer III. Thalamocortical synapses were more distally distributed over common apical dendrites than tegmentocortical synapses, although some of them overlapped. The numerical density of direct synaptic inputs from the MD and VTA was low. These results suggest that fibres from the VTA exert their inhibitory effects directly on pyramidal cells in layer V via synaptic junctions with apical dendrites of these pyramidal cells, and that the tegmentocortical fibres are in an ideal anatomical position to modulate the reverberatory circuits between the MD and the prelimbic cortex.


Brain Research | 1993

Direct synaptic connections between thalamocortical axon terminals from the mediodorsal thalamic nucleus (MD) and corticothalamic neurons to MD in the prefrontal cortex.

Masaru Kuroda; Kunio Murakami; Satoko Oda; Masataka Shinkai; Kiyoshi Kishi

A combined anterograde axonal degeneration with ibotenic acid and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) retrograde tracing study revealed that some degenerating thalamocortical axon terminals from the mediodorsal thalamic nucleus (MD) directly formed asymmetrical synaptic contacts predominantly with dendritic spines of apical dendrites of WGA-HRP-labeled corticothalamic projection neurons to MD in the prelimbic cortex of the rat. This result suggests that there is a monosynaptic feedback loop from and to MD via deeper layer neurons in the prelimbic cortex.


Brain Research | 1992

Distribution of the piriform cortical terminals to cells in the central segment of the mediodorsal thalamic nucleus of the rat

Masaru Kuroda; Kunio Murakami; Kiyoshi Kishi; Joseph L. Price

A Golgi electron microscopic study was undertaken to investigate the distribution of terminals from the piriform cortex that synapse on identified dendrites of neurons in the central segment of the mediodorsal thalamic nucleus of the rat. The piriform cortical terminals were identified as degenerating terminals following lesions in the cortex. They consisted of two types, i.e., large (LR type) and small (SR type) presynaptic terminals, both of which had round synaptic vesicles and formed asymmetric synaptic contacts. SR boutons terminated preferentially onto distal dendrites and never synapsed on primary dendrites. LR terminals synapsed preferentially on proximal dendrites, but were also found on more distal dendritic segments.


The Journal of Comparative Neurology | 2004

Synaptic relationships between axon terminals from the mediodorsal thalamic nucleus and gamma-aminobutyric acidergic cortical cells in the prelimbic cortex of the rat.

Masaru Kuroda; Junko Yokofujita; Satoko Oda; Joseph L. Price

Although the reciprocal interconnections between the prefrontal cortex and the mediodorsal nucleus of the thalamus (MD) are well known, the involvement of inhibitory cortical interneurons in the neural circuit has not been fully defined. To address this issue, we conducted three combined neuroanatomical studies on the rat brain. First, the frequency and the spatial distribution of synapses made by reconstructed dendrites of nonpyramidal neurons were identified by impregnation of cortical cells with the Golgi method and identification of thalamocortical terminals by degeneration following thalamic lesions. Terminals from MD were found to make synaptic contacts with small dendritic shafts or spines of Golgi‐impregnated nonpyramidal cells with very sparse dendritic spines. Second, a combined study that used anterograde transport of Phaseolus vulgaris leucoagglutinin (PHA‐L) and postembedding γ‐aminobutyric acid (GABA) immunocytochemistry indicated that PHA‐L‐labeled terminals from MD made synaptic junctions with GABA‐immunoreactive dendritic shafts and spines. Nonlabeled dendritic spines were found to receive both axonal inputs from MD with PHA‐L labelings and from GABAergic cells. In addition, synapses were found between dendritic shafts and axon terminals that were both immunoreactive for GABA. Third, synaptic connections between corticothalamic neurons that project to MD and GABAergic terminals were investigated by using wheat germ agglutinin conjugated to horseradish peroxidase and postembedding GABA immunocytochemistry. GABAergic terminals in the prelimbic cortex made symmetrical synaptic contacts with retrogradely labeled corticothalamic neurons to MD. All of the synapses were found on cell somata and thick dendritic trunks. These results provide the first demonstration of synaptic contacts in the prelimbic cortex not only between thalamocortical terminals from MD and GABAergic interneurons but also between GABAergic terminals and corticothalamic neurons that project to MD. The anatomical findings indicate that GABAergic interneurons have a modulatory influence on excitatory reverberation between MD and the prefrontal cortex. J. Comp. Neurol. 477:220–234, 2004.


PLOS ONE | 2013

Monoaminergic and Neuropeptidergic Neurons Have Distinct Expression Profiles of Histone Deacetylases

Kenkichi Takase; Satoko Oda; Masaru Kuroda; Hiromasa Funato

Monoaminergic and neuropeptidergic neurons regulate a wide variety of behaviors, such as feeding, sleep/wakefulness behavior, stress response, addiction, and social behavior. These neurons form neural circuits to integrate different modalities of behavioral and environmental factors, such as stress, maternal care, and feeding conditions. One possible mechanism for integrating environmental factors through the monoaminergic and neuropeptidergic neurons is through the epigenetic regulation of gene expression via altered acetylation of histones. Histone deacetylases (HDACs) play an important role in altering behavior in response to environmental factors. Despite increasing attention and the versatile roles of HDACs in a variety of brain functions and disorders, no reports have detailed the localization of the HDACs in the monoaminergic and neuropeptidergic neurons. Here, we examined the expression profile of the HDAC protein family from HDAC1 to HDAC11 in corticotropin-releasing hormone, oxytocin, vasopressin, agouti-related peptide (AgRP), pro-opiomelanocortin (POMC), orexin, histamine, dopamine, serotonin, and noradrenaline neurons. Immunoreactivities for HDAC1,-2,-3,-5,-6,-7,-9, and -11 were very similar among the monoaminergic and neuropeptidergic neurons, while the HDAC4, -8, and -10 immunoreactivities were clearly different among neuronal groups. HDAC10 expression was found in AgRP neurons, POMC neurons, dopamine neurons and noradrenaline neurons but not in other neuronal groups. HDAC8 immunoreactivity was detected in the cytoplasm of almost all histamine neurons with a pericellular pattern but not in other neuropeptidergic and monoaminergic neurons. Thus, the differential expression of HDACs in monoaminergic and neuropeptidergic neurons may be crucial for the maintenance of biological characteristics and may be altered in response to environmental factors.


Neuroscience Letters | 2004

Thalamocortical projection from the ventral posteromedial nucleus sends its collaterals to layer I of the primary somatosensory cortex in rat

Satoko Oda; Kiyoshi Kishi; Junli Yang; Shaoyun Chen; Junko Yokofujita; Hiroaki Igarashi; Sachiko Tanihata; Masaru Kuroda

Here we examined quantitatively axonal projections originating from the ventral posteromedial thalamic nucleus (VPM) to layer I of the primary somatosensory cortex (SI) by extracellular and intracellular injections of biocytin as an anterograde tracer. Following the extracellular injections, two types of VPM afferents with different arborization patterns in SI were observed. The type I extended vertically, forming dense plexus in layers IV and VI, and projected collaterals to layer I. The type II rarely branched in SI, converged in the plexus formed by the type I, and projected no collaterals to the supragranular layers. The labeled fibers in layer I derived from the first type ran parallel to the brain surface, and their mean length was 339.7 +/- 87.5 microm. Intracellular injection into VPM neurons bearing both types of afferent demonstrated the full axonal arborization in both the reticular thalamic nucleus (Rt) and SI. The total length of the axon of a neuron bearing the type I was 86,968.8 microm, and the length of axonal collaterals in layer I of SI was 433.1 microm. The total axonal length of a neuron bearing the type II was very small. The present study is the first to demonstrate substantial projections from VPM to layer I of SI, and provide quantitative data on the entire extent of the axonal arborization of thalamocortical projections from single VPM neurons.


Brain Research | 1995

Electron microscopic evidence that axon terminals from the mediodorsal thalamic nucleus make direct synaptic contacts with callosal cells in the prelimbic cortex of the rat

Masaru Kuroda; Kunio Murakami; Masataka Shinkai; Hisayuki Ojima; Kiyoshi Kishi

A combined study of anterograde axonal degeneration and HRP retrograde labeling has shown that there exist monosynaptic connections between afferent fibers from the mediodorsal thalamic nucleus (MD) and callosal cells in the prelimbic cortex of the rat. Degenerating axon terminals from MD made asymmetrical synaptic contacts with dendritic spines from apical dendrites of layer III pyramidal cells that were retrogradely labeled with HRP after its injection into the prelimbic cortex contralateral to MD lesions.


Brain Research | 2010

Dopamine D5 receptor immunoreactivity is differentially distributed in GABAergic interneurons and pyramidal cells in the rat medial prefrontal cortex.

Satoko Oda; Hiromasa Funato; Satomi Adachi-Akahane; Masanori Ito; Akiko Okada; Hiroaki Igarashi; Junko Yokofujita; Masaru Kuroda

In the rodent neocortex, the dopamine D5 receptor (D5R) appears to be the predominant subtype of D1-like receptors that are generally considered to play important roles in cognitive functions subserved by the prefrontal cortex (PFC). In this study, to identify the precise localization of D5R in rat PFC, we used a receptor-specific antibody and observed the immunolabeled structures by light and confocal laser scanning microscopies. D5R immunolabeling was found in nearly all neurons, both excitatory and inhibitory neurons. Most of the excitatory neurons showing D5R immunolabeling appear to be pyramidal neurons. In these neurons, D5R immunolabeling was observed throughout somata and dendrites including dendritic spines. In neuropil, almost all of the fiber terminals, represented by synaptophysin immunopositivity, were devoid of D5R. Among inhibitory neuronal subpopulations, we examined parvalbumin-immunopositive neurons (PV neurons), because they form a major subpopulation of fast-spiking neurons. Because parvalbumin immunolabeling enables detection of somata and dendrites as well as axonal profiles, we analyzed the intracellular distribution pattern of D5R immunolabeling. As a result, we found that D5R immunolabeling was mainly in somata and proximal dendrites. The density of intradendritic D5R immunolabeling decreased toward the distal regions. Thus, the distribution pattern of D5R immunolabeling is markedly different between pyramidal neurons and PV neurons. D5R may underlie dopamine modulation of cognitive function in PFC.

Collaboration


Dive into the Masaru Kuroda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge