Masashi Fujitani
Chiba University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masashi Fujitani.
Genes & Development | 2008
Richard Tomasini; Katsuya Tsuchihara; Margareta T. Wilhelm; Masashi Fujitani; Alessandro Rufini; Carol C. Cheung; Fatima Khan; Annick Itie-Youten; Andrew Wakeham; Ming-Sound Tsao; Juan L. Iovanna; Jeremy A. Squire; Igor Jurisica; David R. Kaplan; Gerry Melino; Andrea Jurisicova; Tak W. Mak
The Trp53 gene family member Trp73 encodes two major groups of protein isoforms, TAp73 and DeltaNp73, with opposing pro- and anti-apoptotic functions; consequently, their relative ratio regulates cell fate. However, the precise roles of p73 isoforms in cellular events such as tumor initiation, embryonic development, and cell death remain unclear. To determine which aspects of p73 function are attributable to the TAp73 isoforms, we generated and characterized mice in which exons encoding the TAp73 isoforms were specifically deleted to create a TAp73-deficient (TAp73(-/-)) mouse. Here we show that mice specifically lacking in TAp73 isoforms develop a phenotype intermediate between the phenotypes of Trp73(-/-) and Trp53(-/-) mice with respect to incidence of spontaneous and carcinogen-induced tumors, infertility, and aging, as well as hippocampal dysgenesis. In addition, cells from TAp73(-/-) mice exhibit genomic instability associated with enhanced aneuploidy, which may account for the increased incidence of spontaneous tumors observed in these mutants. Hence, TAp73 isoforms exert tumor-suppressive functions and indicate an emerging role for Trp73 in the maintenance of genomic stability.
Journal of Cell Biology | 2006
Katsuhiko Hata; Masashi Fujitani; Yuichi Yasuda; Hideo Doya; Tomoko Saito; Satoru Yamagishi; Bernhard K. Mueller; Toshihide Yamashita
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA–Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration.
Journal of Biological Chemistry | 2006
Fumiaki Mimura; Satoru Yamagishi; Nariko Arimura; Masashi Fujitani; Takekazu Kubo; Kozo Kaibuchi; Toshihide Yamashita
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.
The Journal of Neuroscience | 2004
Yuiko Hasegawa; Masashi Fujitani; Katsuhiko Hata; Masaya Tohyama; Satoru Yamagishi; Toshihide Yamashita
Several myelin-derived proteins have been identified as components of the CNS myelin that prevents axonal regeneration in the adult vertebrate CNS. Activation of RhoA has been shown to be an essential part of the signaling mechanism of these proteins. Here we report an additional signal, which determines whether these proteins promote or inhibit axon outgrowth. Myelin-associated glycoprotein (MAG) and Nogo trigger the intracellular elevation of Ca2+ as well as the activation of PKC, presumably mediated by Gi/G. Neurite outgrowth inhibition and growth cone collapse by MAG or Nogo can be converted to neurite extension and growth cone spreading by inhibiting conventional PKC, but not by inhibiting inositol 1,4,5-triphosphate (IP3). Conversely, neurite growth of immature neurons promoted by MAG is abolished by inhibiting IP3. Activation of RhoA is independent of PKC. Thus, a balance between PKC and IP3 is important for bidirectional regulation of axon regeneration by the myelin-derived proteins.
EMBO Reports | 2004
Tomas Madura; Toshihide Yamashita; Tateki Kubo; Masashi Fujitani; Ko Hosokawa; Masaya Tohyama
Axons of the adult central nervous system have very limited ability to regenerate after injury. This inability may be, at least partly, attributable to myelin‐derived proteins, such as myelin‐associated glycoprotein, Nogo and oligodendrocyte myelin glycoprotein. Recent evidence suggests that these proteins inhibit neurite outgrowth by activation of Rho through the neurotrophin receptor p75NTR/Nogo receptor complex. Despite rapidly growing knowledge on these signals at the molecular level, it remained to be determined whether Rho is activated after injury to the central nervous system. To assess this question, we establish a new method to visualize endogenous Rho activity in situ. After treatment of cerebellar granular neurons with the Nogo peptide in vitro, Rho is spatially activated and colocalizes with p75NTR. Following spinal cord injury in vivo, massive activation of Rho is observed in the injured neurites. Spatial regulation of Rho activity may be necessary for axonal regulation by the inhibitory cues.
Molecular Neurobiology | 2005
Toshihide Yamashita; Masashi Fujitani; Satoru Yamagishi; Katsuhiko Hata; Fumiaki Mimura
Several myelin-derived proteins have been identified as components of central nervous system (CNS) myelin, which prevents axonal regeneration in the adult vertebrate CNS. The discovery of the receptor for these proteins was a major step toward understanding the failure of axon regeneration. The receptor complex consists of at least three elements: the p75 receptor (p75NTR), the Nogo receptor and LINGO-1. Downstream from the receptor complex, RhoA activation has been shown to be a key element of the signaling mechanism of these proteins. Rho activation arrests axon growth, and blocking Rho activation promotes axon regeneration in vivo. Recent studies have identified conventional protein kinase C as an additional necessary component for axon growth inhibition. Possible crosstalk downstream of these signals should be explored to clarify all the inhibitory signals and may provide an efficient molecular target against injuries to the CNS.
Neuron | 2008
Monica K. Wetzel; Sibel Naska; Christine Laliberté; Vladimir V. Rymar; Masashi Fujitani; Jeffrey A.Biernaskie; Christy J. Cole; Jason P. Lerch; Shoshana Spring; Szu-Han Wang; Paul W. Frankland; R. Mark Henkelman; Sheena A. Josselyn; Abbas F. Sadikot; Freda D. Miller; David R. Kaplan
The genetic mechanisms that regulate neurodegeneration are only poorly understood. We show that the loss of one allele of the p53 family member, p73, makes mice susceptible to neurodegeneration as a consequence of aging or Alzheimers disease (AD). Behavioral analyses demonstrated that old, but not young, p73+/- mice displayed reduced motor and cognitive function, CNS atrophy, and neuronal degeneration. Unexpectedly, brains of aged p73+/- mice demonstrated dramatic accumulations of phospho-tau (P-tau)-positive filaments. Moreover, when crossed to a mouse model of AD expressing a mutant amyloid precursor protein, brains of these mice showed neuronal degeneration and early and robust formation of tangle-like structures containing P-tau. The increase in P-tau was likely mediated by JNK; in p73+/- neurons, the activity of the p73 target JNK was enhanced, and JNK regulated P-tau levels. Thus, p73 is essential for preventing neurodegeneration, and haploinsufficiency for p73 may be a susceptibility factor for AD and other neurodegenerative disorders.
Current Biology | 2010
Masashi Fujitani; Gonzalo I. Cancino; Chandrasagar B. Dugani; Ian C.G. Weaver; Andrée Gauthier-Fisher; Annie Paquin; Tak W. Mak; Martin J. Wojtowicz; Freda D. Miller; David R. Kaplan
Increasing evidence suggests that deficits in adult stem cell maintenance cause aberrant tissue repair and premature aging [1]. While the mechanisms regulating stem cell longevity are largely unknown, recent studies have implicated p53 and its family member p63. Both proteins regulate organismal aging [2-4] as well as survival and self-renewal of tissue stem cells [5-9]. Intriguingly, haploinsufficiency for a third family member, p73, causes age-related neurodegeneration [10]. While this phenotype is at least partially due to loss of the ΔNp73 isoform, a potent neuronal prosurvival protein [11-16], a recent study showed that mice lacking the other p73 isoform, TAp73, have perturbations in the hippocampal dentate gyrus [17], a major neurogenic site in the adult brain. These findings, and the link between the p53 family, stem cells, and aging, suggest that TAp73 might play a previously unanticipated role in maintenance of neural stem cells. Here, we have tested this hypothesis and show that TAp73 ensures normal adult neurogenesis by promoting the long-term maintenance of neural stem cells. Moreover, we show that TAp73 does this by transcriptionally regulating the bHLH Hey2, which itself promotes neural precursor maintenance by preventing premature differentiation.
Journal of Neurochemistry | 2005
Masashi Fujitani; Hiromichi Kawai; Richard L. Proia; Atsunori Kashiwagi; Hitoshi Yasuda; Toshihide Yamashita
Myelin‐associated glycoprotein (MAG) is a potent inhibitor of neurite outgrowth from a variety of neurons. Here we show that gangliosides, GT1b and GD1a, as well as the Nogo receptor, are functional binding partners for soluble MAG‐Fc. Postnatal cerebellar neurons from mice deficient in the GalNAcT gene are insensitive to MAG with regard to neurite outgrowth and lack in the activation of RhoA. MAG‐Fc or the antibody to GT1b and GD1a elicits recruitment of p75NTR. to lipid rafts, specialized microdomain for signal transduction. Disruption of lipid rafts results in abolishment of inhibitory effects of MAG‐Fc and the Nogo peptide. These findings establish gangliosides as functional binding partners for soluble MAG. Gangliosides may play a role in translocation of p75NTR. to lipid rafts for initiation of the signal transduction.
Journal of The Peripheral Nervous System | 2006
Akiyuki Hiraga; Satoshi Kuwabara; Hideo Doya; Kazuaki Kanai; Masashi Fujitani; Junko Taniguchi; Kimihito Arai; Masahiro Mori; Takamichi Hattori; Toshihide Yamashita
Abstract In injured adult neurons, the process of axonal regrowth and reestablishment of the neuronal function have to be activated. We assessed in this study whether RhoA, a key regulator of neurite elongation, is activated after injury to the peripheral nervous system. RhoA is activated in motoneurons but not in Schwann cells after mouse sciatic nerve injury. To examine whether the activation of RhoA and its effector, Rho‐kinase, retards axon regeneration of injured motoneurons, we employed a Rho‐kinase inhibitor, fasudil. Amplitudes of distally evoked compound muscle action potentials are increased significantly faster after axonal injury in mice treated with fasudil compared with controls. Histological analysis shows that fasudil treatment increases the number of regenerating axons with large diameter, suggesting that axon maturation is facilitated by Rho‐kinase inhibition. In addition, fasudil does not suppress the myelination of regenerating axons. These findings suggest that RhoA/Rho‐kinase may be a practical molecular target to enhance axonal regeneration in human peripheral neuropathies.