Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Hatamoto is active.

Publication


Featured researches published by Masashi Hatamoto.


Applied and Environmental Microbiology | 2007

Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges.

Masashi Hatamoto; Hiroyuki Imachi; Akiyoshi Ohashi; Hideki Harada

ABSTRACT We investigated long-chain fatty acid (LCFA)-degrading anaerobic microbes by enrichment, isolation, and RNA-based stable isotope probing (SIP). Primary enrichment cultures were made with each of four LCFA substrates (palmitate, stearate, oleate, or linoleate, as the sole energy source) at 55°C or 37°C with two sources of anaerobic granular sludge as the inoculum. After several transfers, we obtained seven stable enrichment cultures in which LCFAs were converted to methane. The bacterial populations in these cultures were then subjected to 16S rRNA gene-based cloning, in situ hybridization, and RNA-SIP. In five of seven enrichment cultures, the predominant bacteria were affiliated with the family Syntrophomonadaceae. The other two enrichment cultures contained different bacterial populations in which the majority of members belonged to the phylum Firmicutes and the class Deltaproteobacteria. After several attempts to isolate these dominant bacteria, strain MPA, belonging to the family Syntrophomonadaceae, and strain TOL, affiliated with the phylum Firmicutes, were successfully isolated. Strain MPA converts palmitate to acetate and methane in syntrophic association with Methanospirillum hungatei. Even though strain TOL assimilated [13C]palmitate in the original enrichment culture, strain TOL has not shown the ability to degrade LCFAs after isolation. These results suggest that microbes involved in the degradation of LCFAs under methanogenic conditions might not belong only to the family Syntrophomonadaceae, as most anaerobic LCFA-degrading microbes do, but may also be found in phylogenetically diverse bacterial groups.


Applied and Environmental Microbiology | 2007

Diversity of Anaerobic Microorganisms Involved in Long-Chain Fatty Acid Degradation in Methanogenic Sludges as Revealed by RNA-Based Stable Isotope Probing

Masashi Hatamoto; Hiroyuki Imachi; Yuto Yashiro; Akiyoshi Ohashi; Hideki Harada

ABSTRACT Long-chain fatty acid (LCFA) degradation is a key step in methanogenic treatment of wastes/wastewaters containing high concentrations of lipids. However, despite the importance of LCFA-degrading bacteria, their natural diversity is little explored due to the limited availability of isolate information and the lack of appropriate molecular markers. We therefore investigated these microbes by using RNA-based stable isotope probing. We incubated four methanogenic sludges (mesophilic sludges MP and MBF and thermophilic sludges TP and JET) with 13C-labeled palmitate (1 mM) as a substrate. After 8 to 19 days of incubation, we could detect 13C-labeled bacterial rRNA. A density-resolved terminal restriction fragment length polymorphism fingerprinting analysis showed distinct bacterial populations in 13C-labeled and unlabeled rRNA fractions. The bacterial populations in the 13C-labeled rRNA fractions were identified by cloning and sequencing of reverse-transcribed 16S rRNA. Diverse phylogenetic bacterial sequences were retrieved, including those of members of the family Syntrophaceae, clone cluster MST belonging to the class Deltaproteobacteria, Clostridium clusters III and IV, phylum Bacteroidetes, phylum Spirochaetes, and family Syntrophomonadaceae. Although Syntrophomonadaceae species are considered to be the major fatty acid-degrading syntrophic microorganisms under methanogenic conditions, they were detected in only two of the clone libraries. These results suggest that phylogenetically diverse bacterial groups were active in situ in the degradation of LCFA under methanogenic conditions.


Water Research | 2010

Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor

Masashi Hatamoto; Hiroki Yamamoto; Tomonori Kindaichi; Noriatsu Ozaki; Akiyoshi Ohashi

Anaerobic wastewater treatment plants discharge dissolved methane, which is usually not recovered. To prevent emission of methane, which is a greenhouse gas, we utilized an encapsulated down-flow hanging sponge reactor as a post-treatment to biologically oxidize dissolved methane. Within 3 weeks after reactor start-up, methane removal efficiency of up to 95% was achieved with a methane removal rate of 0.8 kg COD m(-3) day(-1) at an HRT of 2 h. After increasing the methane-loading rate, the maximum methane removal rate reached 2.2 kg COD m(-3) day(-1) at an HRT of 0.5 h. On the other hand, only about 10% of influent ammonium was oxidized to nitrate during the first period, but as airflow was increased to 2.5 L day(-1), nitrification efficiency increased to approximately 70%. However, the ammonia oxidation rate then decreased with an increase in the methane-loading rate. These results indicate that methane oxidation occurred preferentially over ammonium oxidation in the reactor. Cloning of the 16S rRNA and pmoA genes as well as phylogenetic and T-RFLP analyses revealed that type I methanotrophs were the dominant methane oxidizers, whereas type II methanotrophs were detected only in minor portion of the reactor.


Microbial Ecology | 2015

Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

Kyohei Kuroda; Masashi Hatamoto; Nozomi Nakahara; Kenichi Abe; Masanobu Takahashi; Nobuo Araki; Takashi Yamaguchi

Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.


Applied Microbiology and Biotechnology | 2010

Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology

Masashi Hatamoto; Akiyoshi Ohashi; Hiroyuki Imachi

Peptide nucleic acids (PNAs) are nucleic acid analogs having attractive properties such as quiet stability against nucleases and proteases, and they form strong complexes with complementary strands of DNA or RNA. Because of this attractive nature, PNA is often used in antisense technology to inhibit gene expression and microbial cell growth with high specificity. Many bacterial antisense or antiribosomal studies using PNA oligomers have been reported so far, and parameters to design effective antisense PNAs and to improve PNA cell entry for efficient inhibition of bacterial growth have been presented. However, there are still several obstacles such as low cellular uptake of PNA while applying antisense PNAs to a complex microbial community. On overcoming these problems, the PNA antisense technique might become a very attractive tool not only for controlling the microbial growth but also for further elucidating microbial ecology in complex microbial consortia. Here, we summarize and present recent studies on the development of antimicrobial PNAs targeting mRNAs and rRNAs. In addition, the application potentiality of antisense techniques in nonclinical biotechnology fields is discussed.


Bioresource Technology | 2011

Dissolved methane oxidation and competition for oxygen in down-flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment

Masashi Hatamoto; Tomo Miyauchi; Tomonori Kindaichi; Noriatsu Ozaki; Akiyoshi Ohashi

Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation.


Water Science and Technology | 2010

Closed DHS system to prevent dissolved methane emissions as greenhouse gas in anaerobic wastewater treatment by its recovery and biological oxidation.

Norihisa Matsuura; Masashi Hatamoto; Haruhiko Sumino; Kazuaki Syutsubo; Takashi Yamaguchi; Akiyoshi Ohashi

Anaerobic wastewater treatment has been focused on its eco-friendly nature in terms of the improved energy conservation and reduction in carbon dioxide emissions. However, the anaerobic process discharges unrecovered methane as dissolved methane. In this study, to prevent the emission of dissolved methane from up-flow anaerobic sludge blanket (UASB) reactors used to treat sewage and to recover it as useful gas, we employed a two-stage down-flow hanging sponge (DHS) reactor as a post-treatment of the UASB reactor. The closed DHS reactor in the first stage was intended for the recovery of dissolved methane from the UASB reactor effluent; the reactor could successfully recover an average of 76.8% of the influent dissolved methane as useful gas (containing methane over 30%) with hydraulic retention time of 2 h. During the experimental period, it was possible to maintain the recovered methane concentrations greater than 30% by adjusting the air supply rate. The remaining dissolved methane after the first stage was treated by the next step. The second closed DHS reactor was operated for oxidation of the residual methane and polishing of the remaining organic carbons. The reactor had a high performance and the influent dissolved methane was mostly eliminated to approximately 0.01 mgCOD L(-1). The dissolved methane from the UASB reactor was completely eliminated--by more than 99%--by the post-treatment after the two-stage closed DHS system.


Journal of Environmental Management | 2015

Recovery and biological oxidation of dissolved methane in effluent from UASB treatment of municipal sewage using a two-stage closed downflow hanging sponge system

Norihisa Matsuura; Masashi Hatamoto; Haruhiko Sumino; Kazuaki Syutsubo; Takashi Yamaguchi; Akiyoshi Ohashi

A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions.


Water Research | 2013

Phosphate recovery as concentrated solution from treated wastewater by a PAO-enriched biofilm reactor

Hiroya Kodera; Masashi Hatamoto; Kenichi Abe; Tomonori Kindaichi; Noriatsu Ozaki; Akiyoshi Ohashi

Phosphorus recovery from wastewaters and its recycling are of importance for sustaining agricultural production. During the conventional enhanced biological phosphorus removal process, phosphorus is removed by withdrawing excess sludge from wastewater. However, excess sludge disposal is costly and energy intensive. A proposed novel process for phosphorus recovery from sewage treatment will result in no excess sludge if a polyphosphate accumulating organisms (PAOs) enrichment biofilm can be applied to effluents containing phosphate. This process allows the recovery of phosphate as phosphate-concentrated solutions by controlling PAOs to absorb and release phosphate. A reactor consisting of a modified trickling filter with a synthetic substrate (5 mg P L⁻¹) was operated to form a PAO-enriched biofilm. As a result of the enrichment, the concentration of phosphate of >100 mg P L⁻¹ was successfully achieved. During this experiment, no sludge withdrawal was carried out over the duration of the operation of 255 days. To highlight the new process, the principle of enriching PAOs on biofilm and concentrating phosphate from treated sewage is explained, and a discussion on phosphate recovery performance is given.


Applied and Environmental Microbiology | 2008

Detection of Active Butyrate-Degrading Microorganisms in Methanogenic Sludges by RNA-Based Stable Isotope Probing

Masashi Hatamoto; Hiroyuki Imachi; Yuto Yashiro; Akiyoshi Ohashi; Hideki Harada

ABSTRACT Butyrate-degrading bacteria in four methanogenic sludges were studied by RNA-based stable isotope probing. Bacterial populations in the 13C-labeled rRNA fractions were distinct from unlabeled fractions, and Syntrophaceae species, Tepidanaerobacter sp., and Clostridium spp. dominated. These results suggest that diverse microbes were active in butyrate degradation under methanogenic conditions.

Collaboration


Dive into the Masashi Hatamoto's collaboration.

Top Co-Authors

Avatar

Takashi Yamaguchi

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuaki Syutsubo

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daisuke Tanikawa

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuga Hirakata

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyohei Kuroda

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar

Takahiro Watari

Nagaoka University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge