Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Ikutani is active.

Publication


Featured researches published by Masashi Ikutani.


Diabetes | 2009

Regulatory Mechanisms for Adipose Tissue M1 and M2 Macrophages in Diet-induced Obese Mice

Shiho Fujisaka; Isao Usui; Agussalim Bukhari; Masashi Ikutani; Takeshi Oya; Yukiko Kanatani; Koichi Tsuneyama; Yoshinori Nagai; Kiyoshi Takatsu; Masaharu Urakaze; Masashi Kobayashi; Kazuyuki Tobe

OBJECTIVE To characterize the phenotypic changes of adipose tissue macrophages (ATMs) under different conditions of insulin sensitivity. RESEARCH DESIGN AND METHODS The number and the expressions of marker genes for M1 and M2 macrophages from mouse epididymal fat tissue were analyzed using flow cytometry after the mice had been subjected to a high-fat diet (HFD) and pioglitazone treatment. RESULTS Most of the CD11c-positive M1 macrophages and the CD206-positive M2 macrophages in the epididymal fat tissue were clearly separated using flow cytometry. The M1 and M2 macrophages exhibited completely different gene expression patterns. Not only the numbers of M1 ATMs and the expression of M1 marker genes, such as tumor necrosis factor-α and monocyte chemoattractant protein-1, but also the M1-to-M2 ratio were increased by an HFD and decreased by subsequent pioglitazone treatment, suggesting the correlation with whole-body insulin sensitivity. We also found that the increased number of M2 ATMs after an HFD was associated with the upregulated expression of interleukin (IL)-10, an anti-inflammatory Th2 cytokine, in the adipocyte fraction as well as in adipose tissue. The systemic overexpression of IL-10 by an adenovirus vector increased the expression of M2 markers in adipose tissue. CONCLUSIONS M1 and M2 ATMs constitute different subsets of macrophages. Insulin resistance is associated with both the number of M1 macrophages and the M1-to-M2 ratio. The increased expression of IL-10 after an HFD might be involved in the increased recruitment of M2 macrophages.


Journal of Immunology | 2011

Identification of Innate IL-5–Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity

Masashi Ikutani; Tsutomu Yanagibashi; Masaru Ogasawara; Koichi Tsuneyama; Seiji Yamamoto; Yuichi Hattori; Taku Kouro; Atsuko Itakura; Yoshinori Nagai; Satoshi Takaki; Kiyoshi Takatsu

IL-5 is involved in a number of immune responses such as helminth infection and allergy. IL-5 also plays roles in innate immunity by maintaining B-1 B cells and mucosal IgA production. However, the identity of IL-5–producing cells has not been unambiguously characterized. In this report, we describe the generation of an IL-5 reporter mouse and identify IL-5–producing non-T lymphoid cells that reside in the intestine, peritoneal cavity, and lungs in naive mice. They share many characteristics with natural helper cells, nuocytes, and Ih2 cells, including surface Ags and responsiveness to cytokines. However, these phenotypes do not completely overlap with any particular one of these cell types. Innate non-T IL-5–producing cells localized most abundantly in the lung and proliferated and upregulated IL-5 production in response to IL-25 and IL-33. IL-33 was more effective than IL-25. These cells contribute to maintaining sufficient numbers of lung eosinophils and are important for eosinophil recruitment mediated by IL-25 and IL-33. Given that eosinophils are shown to possess antitumor activity, we studied lung tumor metastasis and showed that innate IL-5–producing cells were increased in response to tumor invasion, and their regulation of eosinophils is critical to suppress tumor metastasis. Genetic blockade or neutralization of IL-5 impaired eosinophil recruitment into the lung and resulted in increased tumor metastasis. Conversely, exogenous IL-5 treatment resulted in suppressed tumor metastasis and augmented eosinophil infiltration. These newly identified innate IL-5–producing cells thus play a role in tumor surveillance through lung eosinophils and may contribute to development of novel immunotherapies for cancer.


Diabetologia | 2013

Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice

Shiho Fujisaka; Isao Usui; Masashi Ikutani; Aminuddin Aminuddin; Akiko Takikawa; Koichi Tsuneyama; Arshad Mahmood; Nobuhito Goda; Yoshinori Nagai; Kiyoshi Takatsu; Kazuyuki Tobe

Aims/hypothesisAs obesity progresses, adipose tissue exhibits a hypoxic and inflammatory phenotype characterised by the infiltration of adipose tissue macrophages (ATMs). In this study, we examined how adipose tissue hypoxia is involved in the induction of the inflammatory M1 and anti-inflammatory M2 polarities of ATMs.MethodsThe hypoxic characteristics of ATMs were evaluated using flow cytometry after the injection of pimonidazole, a hypoxia probe, in normal-chow-fed or high-fat-fed mice. The expression of hypoxia-related and inflammation-related genes was then examined in M1/M2 ATMs and cultured macrophages.ResultsPimonidazole uptake was greater in M1 ATMs than in M2 ATMs. This uptake was paralleled by the levels of inflammatory cytokines, such as TNF-α, IL-6 and IL-1β. The expression level of hypoxia-related genes, as well as inflammation-related genes, was also higher in M1 ATMs than in M2 ATMs. The expression of Il6, Il1β and Nos2 in cultured macrophages was increased by exposure to hypoxia in vitro but was markedly decreased by the gene deletion of Hif1a. In contrast, the expression of Tnf, another inflammatory cytokine gene, was neither increased by exposure to hypoxia nor affected by Hif1a deficiency. These results suggest that hypoxia induces the inflammatory phenotypes of macrophages via Hif1a-dependent and -independent mechanisms. On the other hand, the expression of inflammatory genes in cultured M2 macrophages treated with IL-4 responded poorly to hypoxia.Conclusions/interpretationAdipose tissue hypoxia induces an inflammatory phenotype via Hif1a-dependent and Hif1a-independent mechanisms in M1 ATMs but not in M2 ATMs.


Endocrinology | 2011

Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice.

Shiho Fujisaka; Isao Usui; Yukiko Kanatani; Masashi Ikutani; Ichiro Takasaki; Koichi Tsuneyama; Yoshiaki Tabuchi; Agussalim Bukhari; Yu Yamazaki; Hikari Suzuki; Satoko Senda; Aminuddin Aminuddin; Yoshinori Nagai; Kiyoshi Takatsu; Masashi Kobayashi; Kazuyuki Tobe

Diet-induced obesity is reported to induce a phenotypic switch in adipose tissue macrophages from an antiinflammatory M2 state to a proinflammatory M1 state. Telmisartan, an angiotensin II type 1 receptor blocker and a peroxisome proliferator-activated receptor-γ agonist, reportedly has more beneficial effects on insulin sensitivity than other angiotensin II type 1 receptor blockers. In this study, we studied the effects of telmisartan on the adipose tissue macrophage phenotype in high-fat-fed mice. Telmisartan was administered for 5 wk to high-fat-fed C57BL/6 mice. Insulin sensitivity, macrophage infiltration, and the gene expressions of M1 and M2 markers in visceral adipose tissues were then examined. An insulin- or a glucose-tolerance test showed that telmisartan treatment improved insulin resistance, decreasing the body weight gain, visceral fat weight, and adipocyte size without affecting the amount of energy intake. Telmisartan reduced the mRNA expression of CD11c and TNF-α, M1 macrophage markers, and significantly increased the expressions of M2 markers, such as CD163, CD209, and macrophage galactose N-acetyl-galactosamine specific lectin (Mgl2), in a quantitative RT-PCR analysis. A flow cytometry analysis showed that telmisartan decreased the number of M1 macrophages in visceral adipose tissues. In conclusion, telmisartan improves insulin sensitivity and modulates adipose tissue macrophage polarization to an antiinflammatory M2 state in high-fat-fed mice.


Journal of Leukocyte Biology | 2014

Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation

Hiroe Honda; Yoshinori Nagai; Takayuki Matsunaga; Naoki Okamoto; Yasuharu Watanabe; Koichi Tsuneyama; Hiroaki Hayashi; Isao Fujii; Masashi Ikutani; Yoshikatsu Hirai; Atsushi Muraguchi; Kiyoshi Takatsu

Inflammasome activation initiates the development of many inflammatory diseases, including obesity and type 2 diabetes. Therefore, agents that target discrete activation steps could represent very important drugs. We reported previously that ILG, a chalcone from Glycyrrhiza uralensis, inhibits LPS‐induced NF‐κB activation. Here, we show that ILG potently inhibits the activation of NLRP3 inflammasome, and the effect is independent of its inhibitory potency on TLR4. The inhibitory effect of ILG was stronger than that of parthenolide, a known inhibitor of the NLRP3 inflammasome. GL, a triterpenoid from G. uralensis, had similar inhibitory effects on NLRP3 activity, but high concentrations of GL were required. In contrast, activation of the AIM2 inflammasome was inhibited by GL but not by ILG. Moreover, GL inhibited NLRP3‐ and AIM2‐activated ASC oligomerization, whereas ILG inhibited NLRP3‐activated ASC oligomerization. Low concentrations of ILG were highly effective in IAPP‐induced IL‐1β production compared with the sulfonylurea drug glyburide. In vivo analyses revealed that ILG potently attenuated HFD‐induced obesity, hypercholesterolemia, and insulin resistance. Furthermore, ILG treatment improved HFD‐induced macrovesicular steatosis in the liver. Finally, ILG markedly inhibited diet‐induced adipose tissue inflammation and IL‐1β and caspase‐1 production in white adipose tissue in ex vivo culture. These results suggest that ILG is a potential drug target for treatment of NLRP3 inflammasome‐associated inflammatory diseases.


Scientific Reports | 2015

Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes

Seiji Yamamoto; Shumpei Niida; Erika Azuma; Tsutomu Yanagibashi; Masashi Muramatsu; Ting Ting Huang; Hiroshi Sagara; Sayuri Higaki; Masashi Ikutani; Yoshinori Nagai; Kiyoshi Takatsu; Kenji Miyazaki; Takeru Hamashima; Hisashi Mori; Naoyuki Matsuda; Yoko Ishii; Masakiyo Sasahara

Emerging lines of evidence have shown that extracellular vesicles (EVs) mediate cell-to-cell communication by exporting encapsulated materials, such as microRNAs (miRNAs), to target cells. Endothelial cell-derived EVs (E-EVs) are upregulated in circulating blood in different pathological conditions; however, the characteristics and the role of these E-EVs are not yet well understood. In vitro studies were conducted to determine the role of inflammation-induced E-EVs in the cell-to-cell communication between vascular endothelial cells and pericytes/vSMCs. Stimulation with inflammatory cytokines and endotoxin immediately induced release of shedding type E-EVs from the vascular endothelial cells, and flow cytometry showed that the induction was dose dependent. MiRNA array analyses revealed that group of miRNAs were specifically increased in the inflammation-induced E-EVs. E-EVs added to the culture media of cerebrovascular pericytes were incorporated into the cells. The E-EV-supplemented cells showed highly induced mRNA and protein expression of VEGF-B, which was assumed to be a downstream target of the miRNA that was increased within the E-EVs after inflammatory stimulation. The results suggest that E-EVs mediate inflammation-induced endothelial cell-pericyte/vSMC communication, and the miRNAs encapsulated within the E-EVs may play a role in regulating target cell function. E-EVs may be new therapeutic targets for the treatment of inflammatory diseases.


Protein Science | 2012

Structural basis of interleukin-5 dimer recognition by its α receptor

Seisuke Kusano; Mutsuko Kukimoto-Niino; Nobumasa Hino; Noboru Ohsawa; Masashi Ikutani; Satoshi Takaki; Kensaku Sakamoto; Miki Hara-Yokoyama; Mikako Shirouzu; Kiyoshi Takatsu; Shigeyuki Yokoyama

Interleukin‐5 (IL‐5), a major hematopoietin, stimulates eosinophil proliferation, migration, and activation, which have been implicated in the pathogenesis of allergic inflammatory diseases, such as asthma. The specific IL‐5 receptor (IL‐5R) consists of the IL‐5 receptor α subunit (IL‐5RA) and the common receptor β subunit (βc). IL‐5 binding to IL‐5R on target cells induces rapid tyrosine phosphorylation and activation of various cellular proteins, including JAK1/JAK2 and STAT1/STAT5. Here, we report the crystal structure of dimeric IL‐5 in complex with the IL‐5RA extracellular domains. The structure revealed that IL‐5RA sandwiches the IL‐5 homodimer by three tandem domains, arranged in a “wrench‐like” architecture. This association mode was confirmed for human cells expressing IL‐5 and the full‐length IL‐5RA by applying expanded genetic code technology: protein photo‐cross‐linking experiments revealed that the two proteins interact with each other in vivo in the same manner as that in the crystal structure. Furthermore, a comparison with the previously reported, partial GM‐CSF•GM‐CSFRA•βc structure enabled us to propose complete structural models for the IL‐5 and GM‐CSF receptor complexes, and to identify the residues conferring the cytokine‐specificities of IL‐5RA and GM‐CSFRA.


Journal of Biological Chemistry | 2014

Deficiency of Nicotinamide Mononucleotide Adenylyltransferase 3 (Nmnat3) Causes Hemolytic Anemia by Altering the Glycolytic Flow in Mature Erythrocytes

Keisuke Hikosaka; Masashi Ikutani; Masayuki Shito; Kohei Kazuma; Maryam Gulshan; Yoshinori Nagai; Kiyoshi Takatsu; Katsuhiro Konno; Kazuyuki Tobe; Hitoshi Kanno; Takashi Nakagawa

Background: Nmnat3 is considered a mitochondria-localized NAD synthesis enzyme. However, its physiological function in vivo remains unclear. Results: Loss of Nmnat3 results in drastic depletion of the NAD pool and stalls the glycolytic flow in mature erythrocytes. Conclusion: Nmnat3 deficiency causes splenomegaly and hemolytic anemia in mice. Significance: This report reveals the essential role of Nmnat3 in mature erythrocytes. NAD biosynthesis is of substantial interest because of its important roles in regulating various biological processes. Nicotinamide mononucleotide adenylyltransferase 3 (Nmnat3) is considered a mitochondria-localized NAD synthesis enzyme involved in de novo and salvage pathways. Although the biochemical properties of Nmnat3 are well documented, its physiological function in vivo remains unclear. In this study, we demonstrated that Nmnat3 was localized in the cytoplasm of mature erythrocytes and critically regulated their NAD pool. Deficiency of Nmnat3 in mice caused splenomegaly and hemolytic anemia, which was associated with the findings that Nmnat3-deficient erythrocytes had markedly lower ATP levels and shortened lifespans. However, the NAD level in other tissues were not apparently affected by the deficiency of Nmnat3. LC-MS/MS-based metabolomics revealed that the glycolysis pathway in Nmnat3-deficient erythrocytes was blocked at a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step because of the shortage of the coenzyme NAD. Stable isotope tracer analysis further demonstrated that deficiency of Nmnat3 resulted in glycolysis stall and a shift to the pentose phosphate pathway. Our findings indicate the critical roles of Nmnat3 in maintenance of the NAD pool in mature erythrocytes and the physiological impacts at its absence in mice.


International Immunology | 2012

The RP105/MD-1 complex is indispensable for TLR4/ MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells

Yoshinori Nagai; Tsutomu Yanagibashi; Yasuharu Watanabe; Masashi Ikutani; Ai Kariyone; Shoichiro Ohta; Yoshikatsu Hirai; Masao Kimoto; Kensuke Miyake; Kiyoshi Takatsu

Marginal zone (MZ) B cells mount rapid T-cell-independent (T-I) immune responses against microbial components such as LPS. While Toll-like receptor 4 (TLR4) is essential for LPS responses, MZ B cells uniquely express high levels of another LPS sensor Radioprotective 105 (RP105). However, little is known about how RP105 is used by MZ B cells. In this study, we investigated TLR4- or RP105-dependent MZ B cell responses by utilizing agonistic monoclonal antibodies (mAbs) to each receptor. Cross-linking TLR4 and RP105 at the same time with the mAbs induced robust IgM-secreting plasma cell generation as lipid A moiety of LPS. In contrast, stimulation with either mAb alone did not elicit such responses. RP105-deficient MZ B cells failed to produce IgM-secreting plasma cells in response to lipid A. TLR4 or lipid A stimulation of MZ B cells up-regulated their B lymphocyte-induced maturation protein 1 (Blimp-1) and X-box-binding protein 1 (Xbp-1) mRNA expression. RP105 stimulation alone did not give these responses and in fact decreased TLR4-mediated their expression. Compared with wild-type (WT) MZ B cells, RP105-deficient MZ B cells exhibited increased levels of Blimp-1 and Xbp-1 mRNA expression in response to lipid A. Lipid A or TLR4 plus RP105 stimulation induced massive proliferation and expression of Bcl-xL and c-Myc in WT but not RP105-deficient MZ B cells. These responses contributed to TLR4-mediated anti-apoptotic responses in MZ B cells. Thus, RP105 contributes in a unique way to the TLR4-dependent survival, proliferation and plasma cell generation of MZ B cells.


Immunology | 2016

Interferon-γ constrains cytokine production of group 2 innate lymphoid cells.

Fujimi Kudo; Masashi Ikutani; Yoichi Seki; Takeshi Otsubo; Yuki I. Kawamura; Taeko Dohi; Kenshiro Oshima; Masahira Hattori; Susumu Nakae; Kiyoshi Takatsu; Satoshi Takaki

Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin‐5 (IL‐5), which supports eosinophil responses in various tissues; they also produce IL‐13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL‐33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon‐γ (IFN‐γ). Interferon‐γ severely inhibited IL‐5 and IL‐13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α‐galactosylceramide (α‐GalCer) to induce NKT cells to produce IL‐33 and IFN‐γ. Intraperitoneal injection of α‐GalCer in mice induced NKT cell activation resulting in IL‐5 and IL‐13 production by ILC2s. Administration of anti‐IFN‐γ together with α‐GalCer significantly enhanced the production of IL‐5 and IL‐13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL‐33 in Il33−/− mice pre‐treated with α‐GalCer. Hence, IFN‐γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.

Collaboration


Dive into the Masashi Ikutani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge