Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Iwamoto is active.

Publication


Featured researches published by Masashi Iwamoto.


Hepatology | 2014

Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP).

Koichi Watashi; Ann Sluder; Takuji Daito; Satoko Matsunaga; Akihide Ryo; Shushi Nagamori; Masashi Iwamoto; Syo Nakajima; Senko Tsukuda; Katyna Borroto-Esoda; Masaya Sugiyama; Yasuhito Tanaka; Yoshikatsu Kanai; Hiroyuki Kusuhara; Masashi Mizokami; Takaji Wakita

Chronic hepatitis B virus (HBV) infection is a major public health problem worldwide. Although nucleos(t)ide analogs inhibiting viral reverse transcriptase are clinically available as anti‐HBV agents, emergence of drug‐resistant viruses highlights the need for new anti‐HBV agents interfering with other targets. Here we report that cyclosporin A (CsA) can inhibit HBV entry into cultured hepatocytes. The anti‐HBV effect of CsA was independent of binding to cyclophilin and calcineurin. Rather, blockade of HBV infection correlated with the ability to inhibit the transporter activity of sodium taurocholate cotransporting polypeptide (NTCP). We also found that HBV infection‐susceptible cells, differentiated HepaRG cells and primary human hepatocytes expressed NTCP, while nonsusceptible cell lines did not. A series of compounds targeting NTCP could inhibit HBV infection. CsA inhibited the binding between NTCP and large envelope protein in vitro. Evaluation of CsA analogs identified a compound with higher anti‐HBV potency, having a median inhibitory concentration <0.2 μM. Conclusion: This study provides a proof of concept for the novel strategy to identify anti‐HBV agents by targeting the candidate HBV receptor, NTCP, using CsA as a structural platform. (Hepatology 2014;59:1726–1737)


Biochemical and Biophysical Research Communications | 2014

Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP.

Masashi Iwamoto; Koichi Watashi; Senko Tsukuda; Hussein H. Aly; Masayoshi Fukasawa; Akira Fujimoto; Ryosuke Suzuki; Hideki Aizaki; Takayoshi Ito; Osamu Koiwai; Hiroyuki Kusuhara; Takaji Wakita

Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.


Journal of Biological Chemistry | 2013

Interleukin-1 and tumor necrosis factor-α trigger restriction of hepatitis B virus infection via a cytidine deaminase activation-induced cytidine deaminase (AID).

Koichi Watashi; Guoxin Liang; Masashi Iwamoto; Hiroyuki Marusawa; Nanako Uchida; Takuji Daito; Kouichi Kitamura; Masamichi Muramatsu; Hirofumi Ohashi; Tomoko Kiyohara; Ryosuke Suzuki; Jisu Li; Shuping Tong; Yasuhito Tanaka; Kazumoto Murata; Hideki Aizaki; Takaji Wakita

Background: Cytokines and host factors triggering innate immunity against hepatitis B virus (HBV) are not well understood. Results: IL-1 and TNFα induced cytidine deaminase AID, an anti-HBV host factor, and reduced HBV infection into hepatocytes. Conclusion: IL-1/TNFα reduced host susceptibility to HBV infection through AID up-regulation. Significance: Proinflammatory cytokines modulate HBV infection through a novel innate immune pathway involving AID. Virus infection is restricted by intracellular immune responses in host cells, and this is typically modulated by stimulation of cytokines. The cytokines and host factors that determine the host cell restriction against hepatitis B virus (HBV) infection are not well understood. We screened 36 cytokines and chemokines to determine which were able to reduce the susceptibility of HepaRG cells to HBV infection. Here, we found that pretreatment with IL-1β and TNFα remarkably reduced the host cell susceptibility to HBV infection. This effect was mediated by activation of the NF-κB signaling pathway. A cytidine deaminase, activation-induced cytidine deaminase (AID), was up-regulated by both IL-1β and TNFα in a variety of hepatocyte cell lines and primary human hepatocytes. Another deaminase APOBEC3G was not induced by these proinflammatory cytokines. Knockdown of AID expression impaired the anti-HBV effect of IL-1β, and overexpression of AID antagonized HBV infection, suggesting that AID was one of the responsible factors for the anti-HBV activity of IL-1/TNFα. Although AID induced hypermutation of HBV DNA, this activity was dispensable for the anti-HBV activity. The antiviral effect of IL-1/TNFα was also observed on different HBV genotypes but not on hepatitis C virus. These results demonstrate that proinflammatory cytokines IL-1/TNFα trigger a novel antiviral mechanism involving AID to regulate host cell permissiveness to HBV infection.


Journal of Virology | 2015

A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide

Manabu Kaneko; Koichi Watashi; Shinji Kamisuki; Hiroki Matsunaga; Masashi Iwamoto; Fumihiro Kawai; Hirofumi Ohashi; Senko Tsukuda; Satomi Shimura; Ryosuke Suzuki; Hideki Aizaki; Masaya Sugiyama; Sam-Yong Park; Takayoshi Ito; Naoko Ohtani; Fumio Sugawara; Yasuhito Tanaka; Masashi Mizokami; Camille Sureau; Takaji Wakita

ABSTRACT Anti-hepatitis B virus (HBV) drugs are currently limited to nucleos(t)ide analogs (NAs) and interferons. A challenge of drug development is the identification of small molecules that suppress HBV infection from new chemical sources. Here, from a fungus-derived secondary metabolite library, we identify a structurally novel tricyclic polyketide, named vanitaracin A, which specifically inhibits HBV infection. Vanitaracin A inhibited the viral entry process with a submicromolar 50% inhibitory concentration (IC50) (IC50 = 0.61 ± 0.23 μM), without evident cytotoxicity (50% cytotoxic concentration of >256 μM; selectivity index value of >419) in primary human hepatocytes. Vanitaracin A did not affect the HBV replication process. This compound was found to directly interact with the HBV entry receptor sodium taurocholate cotransporting polypeptide (NTCP) and impaired its bile acid transport activity. Consistent with this NTCP targeting, antiviral activity of vanitaracin A was observed with hepatitis D virus (HDV) but not hepatitis C virus. Importantly, vanitaracin A inhibited infection by all HBV genotypes tested (genotypes A to D) and clinically relevant NA-resistant HBV isolate. Thus, we identified a fungal metabolite, vanitaracin A, which was a potent, well-tolerated, and broadly active inhibitor of HBV and HDV entry. This compound, or its related analogs, could be part of an antiviral strategy for preventing reinfection with HBV, including clinically relevant nucleos(t)ide analog-resistant virus. IMPORTANCE For achieving better treatment and prevention of hepatitis B virus (HBV) infection, anti-HBV agents targeting a new molecule are in great demand. Although sodium taurocholate cotransporting polypeptide (NTCP) has recently been reported to be an essential host factor for HBV entry, there is a limited number of reports that identify new compounds targeting NTCP and inhibiting HBV entry. Here, from an uncharacterized chemical library, we isolated a structurally new compound, named vanitaracin A, which inhibited the process of entry of HBV and hepatitis D virus (HDV). This compound was suggested to directly interact with NTCP and inhibit its transporter activity. Importantly, vanitaracin A inhibited the entry of all HBV genotypes examined and of a clinically relevant nucleos(t)ide analog-resistant HBV isolate.


Journal of Biological Chemistry | 2015

Dysregulation of Retinoic Acid Receptor Diminishes Hepatocyte Permissiveness to Hepatitis B Virus Infection through Modulation of Sodium Taurocholate Cotransporting Polypeptide (NTCP) Expression

Senko Tsukuda; Koichi Watashi; Masashi Iwamoto; Ryosuke Suzuki; Hideki Aizaki; Maiko Okada; Masaya Sugiyama; Soichi Kojima; Yasuhito Tanaka; Masashi Mizokami; Jisu Li; Shuping Tong; Takaji Wakita

Background: Host factors regulating hepatitis B virus (HBV) entry receptors are not well defined. Results: Chemical screening identified that retinoic acid receptor (RAR) regulates sodium taurocholate cotransporting polypeptide (NTCP) expression and supports HBV infection. Conclusion: RAR regulates NTCP expression and thereby supports HBV infection. Significance: RAR regulation of NTCP can be a target for preventing HBV infection. Sodium taurocholate cotransporting polypeptide (NTCP) is an entry receptor for hepatitis B virus (HBV) and is regarded as one of the determinants that confer HBV permissiveness to host cells. However, how host factors regulate the ability of NTCP to support HBV infection is largely unknown. We aimed to identify the host signaling that regulated NTCP expression and thereby permissiveness to HBV. Here, a cell-based chemical screening method identified that Ro41-5253 decreased host susceptibility to HBV infection. Pretreatment with Ro41-5253 inhibited the viral entry process without affecting HBV replication. Intriguingly, Ro41-5253 reduced expression of both NTCP mRNA and protein. We found that retinoic acid receptor (RAR) regulated the promoter activity of the human NTCP (hNTCP) gene and that Ro41-5253 repressed the hNTCP promoter by antagonizing RAR. RAR recruited to the hNTCP promoter region, and nucleotides −112 to −96 of the hNTCP was suggested to be critical for RAR-mediated transcriptional activation. HBV susceptibility was decreased in pharmacologically RAR-inactivated cells. CD2665 showed a stronger anti-HBV potential and disrupted the spread of HBV infection that was achieved by continuous reproduction of the whole HBV life cycle. In addition, this mechanism was significant for drug development, as antagonization of RAR blocked infection of multiple HBV genotypes and also a clinically relevant HBV mutant that was resistant to nucleoside analogs. Thus, RAR is crucial for regulating NTCP expression that determines permissiveness to HBV infection. This is the first demonstration showing host regulation of NTCP to support HBV infection.


Journal of Hepatology | 2017

Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity

Satomi Shimura; Koichi Watashi; Kento Fukano; Michael Peel; Ann Sluder; Fumihiro Kawai; Masashi Iwamoto; Senko Tsukuda; Junko S. Takeuchi; Takeshi Miyake; Masaya Sugiyama; Yuki Ogasawara; Sam-Yong Park; Yasuhito Tanaka; Hiroyuki Kusuhara; Masashi Mizokami; Camille Sureau; Takaji Wakita

Background & Aims The sodium taurocholate co-transporting polypeptide (NTCP) is the main target of most hepatitis B virus (HBV) specific entry inhibitors. Unfortunately, these agents also block NTCP transport of bile acids into hepatocytes, and thus have the potential to cause adverse effects. We aimed to identify small molecules that inhibit HBV entry while maintaining NTCP transporter function. Methods We characterized a series of cyclosporine (CsA) derivatives for their anti-HBV activity and NTCP binding specificity using HepG2 cells overexpressing NTCP and primary human hepatocytes. The four most potent derivatives were tested for their capacity to prevent HBV entry, but maintain NTCP transporter function. Their antiviral activity against different HBV genotypes was analysed. Results We identified several CsA derivatives that inhibited HBV infection with a sub-micromolar IC50. Among them, SCY446 and SCY450 showed low activity against calcineurin (CN) and cyclophilins (CyPs), two major CsA cellular targets. This suggested that instead, these compounds interacted directly with NTCP to inhibit viral attachment to host cells, and have no immunosuppressive function. Importantly, we found that SCY450 and SCY995 did not impair the NTCP-dependent uptake of bile acids, and inhibited multiple HBV genotypes including a clinically relevant nucleoside analog-resistant HBV isolate. Conclusions This is the first example of small molecule selective inhibition of HBV entry with no decrease in NTCP transporter activity. It suggests that the anti-HBV activity can be functionally separated from bile acid transport. These broadly active anti-HBV molecules are potential candidates for developing new drugs with fewer adverse effects. Lay summary In this study, we identified new compounds that selectively inhibited hepatitis B virus (HBV) entry, and did not impair bile acid uptake. Our evidence offers a new strategy for developing anti-HBV drugs with fewer side effects.


Hepatology | 2017

A new class of hepatitis B and D virus entry inhibitors, proanthocyanidin and its analogs, that directly act on the viral large surface proteins

Senko Tsukuda; Koichi Watashi; Taichi Hojima; Masanori Isogawa; Masashi Iwamoto; Katsumi Omagari; Ryosuke Suzuki; Hideki Aizaki; Soichi Kojima; Masaya Sugiyama; Akiko Saito; Yasuhito Tanaka; Masashi Mizokami; Camille Sureau; Takaji Wakita

Introduction of direct‐acting antivirals against hepatitis C virus (HCV) has provided a revolutionary improvement in the treatment outcome. In contrast to HCV, however, the strategy for developing new antiviral agents against hepatitis B virus (HBV), especially viral‐targeting compounds, is limited because HBV requires only four viral genes for its efficient replication/infection. Here, we identify an oligomeric flavonoid, proanthocyanidin (PAC) and its analogs, which inhibit HBV entry into host cells by targeting the HBV large surface protein (LHBs). Through cell‐based chemical screening, PAC was identified to inhibit HBV infection with little cytotoxic effect. PAC prevented the attachment of the preS1 region in the LHBs to its cellular receptor, sodium taurocholate cotransporting polypeptide (NTCP). PAC was shown to target HBV particles and impair their infectivity, whereas it did not affect the NTCP‐mediated bile acid transport activity. Chemical biological techniques demonstrated that PAC directly interacted with the region essential for receptor binding in the preS1 region in the LHBs protein. Importantly, PAC had a pan‐genotypic anti‐HBV activity and was also effective against a clinically relevant nucleoside analog‐resistant HBV isolate. We further showed that PAC augmented the ability of a nucleoside analog, tenofovir, to interrupt HBV spread over time in primary human hepatocytes by cotreatment. Moreover, derivative analysis could identify small molecules that demonstrated more‐potent anti‐HBV activity over PAC. Conclusion: PAC and its analogs represent a new class of anti‐HBV agents that directly target the preS1 region of the HBV large surface protein. These agents could contribute to the development of a potent, well‐tolerated, and broadly active inhibitor of HBV infection. (Hepatology 2017;65:1104‐1116).


Journal of Natural Products | 2016

Anti-hepatitis C Virus Natural Product from a Fungus, Penicillium herquei

Shu Nishikori; Kenji Takemoto; Shinji Kamisuki; Syo Nakajima; Kouji Kuramochi; Senko Tsukuda; Masashi Iwamoto; Yuri Katayama; Takahiro Suzuki; Susumu Kobayashi; Koichi Watashi; Fumio Sugawara

New diazabicyclo[2.2.2]octane derivatives, peniciherquamides A-C (1-3), and a novel herqueinone derivative, neoherqueinone (5), were isolated from a fungal culture broth of Penicillium herquei. The structures of these novel compounds were determined by interpretation of spectroscopic data (1D/2D NMR, MS, and IR). Four known compounds, preparaherquamide (4), peniciherqueinone (6), and herqueinone/isoherqueinone (7/7a), were also obtained. The isolated compounds were tested for anti-hepatitis C virus (HCV) activity, and peniciherquamide C (3) was found to display an IC50 value of 5.1 μM. To our knowledge, this is the first report of a diazabicyclo[2.2.2]octane derivative with anti-HCV activity.


Scientific Reports | 2016

Human induced pluripotent stem cell-derived hepatic cell lines as a new model for host interaction with hepatitis B virus

Shun Kaneko; Sei Kakinuma; Yasuhiro Asahina; Akihide Kamiya; Masato Miyoshi; Tomoyuki Tsunoda; Sayuri Nitta; Yu Asano; Hiroko Nagata; Satoshi Otani; Fukiko Kawai-Kitahata; Miyako Murakawa; Yasuhiro Itsui; Mina Nakagawa; Seishin Azuma; Hiromitsu Nakauchi; Hironori Nishitsuji; Saneyuki Ujino; Kunitada Shimotohno; Masashi Iwamoto; Koichi Watashi; Takaji Wakita; Mamoru Watanabe

Hepatitis B virus (HBV) is not eradicated by current antiviral therapies due to persistence of HBV covalently closed circular DNA (cccDNA) in host cells, and thus development of novel culture models for productive HBV infection is urgently needed, which will allow the study of HBV cccDNA eradication. To meet this need, we developed culture models of HBV infection using human induced pluripotent stem cell-derived hepatocyte lineages, including immature proliferating hepatic progenitor-like cell lines (iPS-HPCs) and differentiated hepatocyte-like cells (iPS-Heps). These cells were susceptible to HBV infection, produced HBV particles, and maintained innate immune responses. The infection efficiency of HBV in iPS-HPCs predominantly depended on the expression levels of sodium taurocholate cotransporting polypeptide (NTCP), and was low relative to iPS-Heps: however, long-term culture of iPS-Heps was difficult. To provide a model for HBV persistence, iPS-HPCs overexpressing NTCP were established. The long-term persistence of HBV cccDNA was detected in iPS-HPCs overexpressing NTCP, and depended on the inhibition of the Janus-kinase signaling pathway. In conclusion, this study provides evidence that iPS-derived hepatic cell lines can be utilized for novel HBV culture models with genetic variation to investigate the interactions between HBV and host cells and the development of anti-HBV strategies.


bioRxiv | 2018

A Single Adaptive Mutation in Sodium Taurocholate Cotransporting Polypeptide Induced by Hepadnaviruses Determines Virus Species-specificity

Junko S. Takeuchi; Kento Fukano; Masashi Iwamoto; Senko Tsukuda; Ryosuke Suzuki; Hideki Aizaki; Masamichi Muramatsu; Takaji Wakita; Camille Sureau; Koichi Watashi

Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates from fish to human. Hepadnaviruses and their hosts have a long history of acquiring adaptive mutations. However, there are no reports providing direct molecular evidence for such a coevolutionary “arms race” between hepadnaviruses and their hosts. Here, we present evidence suggesting the adaptive evolution of the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, has been influenced by virus infection. Evolutionary analysis of the NTCP-encoding genes from 20 mammals showed that most NTCP residues are highly conserved among species, exhibiting evolution under negative selection (dN/dS < 1); this observation implies that the evolution of NTCP is restricted by maintaining its original protein function. However, 0.7 % of NTCP amino acid (aa) residues exhibit rapid evolution under positive selection (dN/dS > 1). Notably, a substitution at aa 158, a positively selected residue, converting the human NTCP to a monkey-type sequence abrogated the capacity to support HBV infection; conversely, a substitution at this residue converting the monkey Ntcp to the human sequence was sufficient to confer HBV susceptibility. Together, these observations suggested that positive selection at aa 158 was induced by virus infection. Moreover, the aa 158 sequence determined attachment of the HBV envelope protein to host cell, demonstrating the mechanism whereby HBV infection would create positive selection at this residue in NTCP. In summary, we provide the first evidence in agreement with the function of hepadnavirus as a driver for inducing an adaptive mutation in host receptor. Importance Hepatitis B virus (HBV) and its hepadnavirus relatives infect a wide range of vertebrates, with a long infectious history (hundreds of millions of years). Such a long history generally allows adaptive mutations in hosts to escape from infection, while simultaneously allowing adaptive mutations in viruses to overcome host barriers. However, there is no published molecular evidence for such a coevolutionary “arms race” between hepadnaviruses and hosts. In the present study, we performed coevolutionary phylogenetic analysis between hepadnaviruses and the sodium taurocholate cotransporting polypeptide (NTCP), an HBV receptor, combined with virological experimental assays for investigating the biological significance of NTCP sequence variation. Our data provide the first molecular evidences supporting that HBV-related hepadnaviruses drive adaptive evolution in the NTCP sequence, including a mechanistic explanation of how NTCP mutations determine host viral susceptibility. Our novel insights enhance our understanding of how hepadnaviruses evolved with their hosts, permitting the acquisition of strong species-specificity.

Collaboration


Dive into the Masashi Iwamoto's collaboration.

Top Co-Authors

Avatar

Koichi Watashi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takaji Wakita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Senko Tsukuda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hideki Aizaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ryosuke Suzuki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camille Sureau

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge