Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Kato is active.

Publication


Featured researches published by Masashi Kato.


Nature | 2005

Genome sequencing and analysis of Aspergillus oryzae

Masayuki Machida; Kiyoshi Asai; Motoaki Sano; Toshihiro Tanaka; Toshitaka Kumagai; Goro Terai; Ken Ichi Kusumoto; Toshihide Arima; Osamu Akita; Yutaka Kashiwagi; Keietsu Abe; Katsuya Gomi; Hiroyuki Horiuchi; Katsuhiko Kitamoto; Tetsuo Kobayashi; Michio Takeuchi; David W. Denning; James E. Galagan; William C. Nierman; Jiujiang Yu; David B. Archer; Joan W. Bennett; Deepak Bhatnagar; Thomas E. Cleveland; Natalie D. Fedorova; Osamu Gotoh; Hiroshi Horikawa; Akira Hosoyama; Masayuki Ichinomiya; Rie Igarashi

The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of the subgenus Circumdati of Aspergillus, A. oryzae, unlike A. flavus, does not produce aflatoxin, and its long history of use in the food industry has proved its safety. Here we show that the 37-megabase (Mb) genome of A. oryzae contains 12,074 genes and is expanded by 7–9 Mb in comparison with the genomes of Aspergillus nidulans and Aspergillus fumigatus. Comparison of the three aspergilli species revealed the presence of syntenic blocks and A. oryzae-specific blocks (lacking synteny with A. nidulans and A. fumigatus) in a mosaic manner throughout the genome of A. oryzae. The blocks of A. oryzae-specific sequence are enriched for genes involved in metabolism, particularly those for the synthesis of secondary metabolites. Specific expansion of genes for secretory hydrolytic enzymes, amino acid metabolism and amino acid/sugar uptake transporters supports the idea that A. oryzae is an ideal microorganism for fermentation.


The EMBO Journal | 2007

Interaction of HapX with the CCAAT‐binding complex—a novel mechanism of gene regulation by iron

Peter Hortschansky; Martin Eisendle; Qusai Al-Abdallah; Andre Schmidt; Sebastian Bergmann; Marcel Thön; Olaf Kniemeyer; Beate Abt; Birgit Seeber; Ernst R. Werner; Masashi Kato; Axel A. Brakhage; Hubertus Haas

Iron homeostasis requires subtle control systems, as iron is both essential and toxic. In Aspergillus nidulans, iron represses iron acquisition via the GATA factor SreA, and induces iron‐dependent pathways at the transcriptional level, by a so far unknown mechanism. Here, we demonstrate that iron‐dependent pathways (e.g., heme biosynthesis) are repressed during iron‐depleted conditions by physical interaction of HapX with the CCAAT‐binding core complex (CBC). Proteome analysis identified putative HapX targets. Mutual transcriptional control between hapX and sreA and synthetic lethality resulting from deletion of both regulatory genes indicate a tight interplay of these control systems. Expression of genes encoding CBC subunits was not influenced by iron availability, and their deletion was deleterious during iron‐depleted and iron‐replete conditions. Expression of hapX was repressed by iron and its deletion was deleterious during iron‐depleted conditions only. These data indicate that the CBC has a general role and that HapX function is confined to iron‐depleted conditions. Remarkably, CBC‐mediated regulation has an inverse impact on the expression of the same gene set in A. nidulans, compared with Saccharomyces cerevisae.


Bioscience, Biotechnology, and Biochemistry | 2007

Genomics of Aspergillus oryzae

Tetsuo Kobayashi; Keietsu Abe; Kiyoshi Asai; Katsuya Gomi; Praveen Rao Juvvadi; Masashi Kato; Katsuhiko Kitamoto; Michio Takeuchi; Masayuki Machida

The genome sequence of Aspergillus oryzae, a fungus used in the production of the traditional Japanese fermentation foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste), has revealed prominent features in its gene composition as compared to those of Saccharomyces cerevisiae and Neurospora crassa. The A. oryzae genome is extremely enriched with genes involved in biomass degradation, primary and secondary metabolism, transcriptional regulation, and cell signaling. Even compared to the related species A. nidulans and A. fumigatus, an abundance of metabolic genes is apparent, with acquisition of more than 6 Mb of sequence in the A. oryzae lineage, interspersed throughout the A. oryzae genome. Besides the various already established merits of A. oryzae for industrial uses, the genome sequence and the abundance of metabolic genes should significantly accelerate the biotechnological use of A. oryzae in industry.


Applied and Environmental Microbiology | 2002

Novel α-glucosidase from Aspergillus nidulans with strong transglycosylation activity

Naoki Kato; Sachie Suyama; Masao Shirokane; Masashi Kato; Tetsuo Kobayashi; Norihiro Tsukagoshi

ABSTRACT Aspergillus nidulans possessed an α-glucosidase with strong transglycosylation activity. The enzyme, designated α-glucosidase B (AgdB), was purified and characterized. AgdB was a heterodimeric protein comprising 74- and 55-kDa subunits and catalyzed hydrolysis of maltose along with formation of isomaltose and panose. Approximately 50% of maltose was converted to isomaltose, panose, and other minor transglycosylation products by AgdB, even at low maltose concentrations. The agdB gene was cloned and sequenced. The gene comprised 3,055 bp, interrupted by three short introns, and encoded a polypeptide of 955 amino acids. The deduced amino acid sequence contained the chemically determined N-terminal and internal amino acid sequences of the 74- and 55-kDa subunits. This implies that AgdB is synthesized as a single polypeptide precursor. AgdB showed low but overall sequence homology to α-glucosidases of glycosyl hydrolase family 31. However, AgdB was phylogenetically distinct from any other α-glucosidases. We propose here that AgdB is a novel α-glucosidase with unusually strong transglycosylation activity.


Fungal Genetics and Biology | 2009

The 2008 update of the Aspergillus nidulans genome annotation: A community effort

Jennifer R. Wortman; Jane Mabey Gilsenan; Vinita Joardar; Jennifer Deegan; John Clutterbuck; Mikael Rørdam Andersen; David B. Archer; Mojca Benčina; Gerhard Braus; Pedro M. Coutinho; Hans von Döhren; John H. Doonan; Arnold J. M. Driessen; Pawel Durek; Eduardo A. Espeso; Erzsébet Fekete; Michel Flipphi; Carlos Garcia Estrada; Steven Geysens; Gustavo H. Goldman; Piet W.J. de Groot; Kim Hansen; Steven D. Harris; Thorsten Heinekamp; Kerstin Helmstaedt; Bernard Henrissat; Gerald Hofmann; Tim Homan; Tetsuya Horio; Hiroyuki Horiuchi

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Molecular Aspects of Medicine | 2003

4-hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions.

Izumi Nakashima; Wei Liu; Anwarul A. Akhand; Kozue Takeda; Yoshiyuki Kawamoto; Masashi Kato; Haruhiko Suzuki

4-hydroxynonenal (HNE), an aldehyde product of membrane lipid peroxidation, has been suggested to mediate a number of oxidative stress-linked pathological events in humans, including cellular growth inhibition and apoptosis induction. Because HNE is potentially reactive to a number of both cell surface and intracellular proteins bearing sulfhydryl, amino and imidazole groups, it seems that there are multiple signal transduction cascades. Here we briefly review the HNE-triggered signal transduction cascades that lead to suppression of cellular functions and to cell death, based mainly on our own recent study results. We first showed that formation of HNE-cell surface protein adducts, which mimicked ligand-cell surface receptor binding, induced activation of receptor-type protein tyrosine kinases such as epithelial growth factor receptor (EGFR) and that this caused growth inhibition through a cascade of activation of EGFR, Shc and ERK. Next, we showed that HNE-mediated scavenging of cellular glutathione led to activation of caspases and to DNA fragmentation through a Fas-independent and mitochondria-linked pro-apoptotic signal pathway. More recently, we have obtained evidence that the HNE-triggered signal cascade for caspase activation encounters complex positive feedback regulatory mechanisms that are linked to the inhibition of anti-apoptotic signals and are dependent on caspase activity. Underlying multiple regulatory mechanisms, including mechanisms of activation of Akt-dephosphorylating PP2A activity, activities of protein tyrosine kinases have been shown to be biphasically controlled by HNE. In addition, we have obtained results suggesting that HNE inhibits phosphorylation of IkappaB, possibly by targeting some elements upstream of IkappaB, which might downregulate the NF-kappaB-mediated cellular responses, including serum deprivation-induced iNOS expression and generation of anti-apoptotic signals. These results suggest that HNE reacts with multiple cell surface and intracellular sites for triggering a network of signal transduction that is ultimately focused on suppression of cellular functions.


Applied Microbiology and Biotechnology | 2009

Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae.

Yuji Noguchi; Motoaki Sano; Kyoko Kanamaru; Taro Ko; Michio Takeuchi; Masashi Kato; Tetsuo Kobayashi

XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5′-GGCTAA-3′, 5′-GGCTAG-3′, and 5′-GGCTGA-3′) in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of β-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of d-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and l-arabinitol-4-dehydrogenase involved in d-glucose and l-arabinose catabolism also appeared to be targets of AoXlnR.


Applied and Environmental Microbiology | 2007

Inhibition of Quorum Sensing in Serratia marcescens AS-1 by Synthetic Analogs of N-Acylhomoserine Lactone

Tomohiro Morohoshi; Toshitaka Shiono; Kiyomi Takidouchi; Masashi Kato; Norihiro Kato; Junichi Kato; Tsukasa Ikeda

ABSTRACT Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.


Bioscience, Biotechnology, and Biochemistry | 2007

The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of Aspergillus nidulans

Daisuke Hagiwara; Yoshihiro Asano; Junichiro Marui; Kentaro Furukawa; Kyoko Kanamaru; Masashi Kato; Keietsu Abe; Tetsuo Kobayashi; Takafumi Yamashino; Takeshi Mizuno

Histidine-to-Aspartate (His-Asp) phosphorelay (or two-component) systems are common signal transduction mechanisms implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes. For a model filamentous fungi, Aspergillus nidulans, in this study we first compiled a complete list of His-Asp phosphorelay components, including 15 genes for His-kinase (HK), four genes for response regulator (RR), and only one for histidine-containing phosphotransfer intermediate (HPt). For these RR genes, a set of deletion mutants was constructed so as to create a null allele for each. When examined these mutant strains under various conditions stressful for hyphal growth and asexual spore development, two of them (designated ΔsskA and ΔsrrA) showed a marked phenotype of hypersensitivity to oxidative stresses (particularly, to hydrogen peroxide). In this respect, expression of the vegetative-stage specific catB catalase gene was severely impaired in both mutants. Furthermore, conidia from ΔsskA were hypersensitive not only to treatment with H2O2, but also to treatment at aberrantly low (4 °C) and high (50 °C) temperatures, resulting in reduced germination efficiency. In this respect, not only the catA catalase gene specific for asexual development, but also a set of genes encoding the enzymes for synthesis of certain stress tolerant compatible solutes, such as trehalose and glycerol, were markedly downregulated in conidia from ΔsskA. These results together are indicative of the physiological importance of the His-Asp phosphorelay signaling network involving the SskA and SrrA response regulators.


International Journal of Urology | 2012

Periurethral injection of autologous adipose‐derived regenerative cells for the treatment of male stress urinary incontinence: Report of three initial cases

Tokunori Yamamoto; Momokazu Gotoh; Masashi Kato; Tsuyoshi Majima; Kazuhiro Toriyama; Yuzuru Kamei; Hideki Iwaguro; Yoshihisa Matsukawa; Yasuhito Funahashi

Objectives:  To report a novel cell therapy using autologous adipose tissue‐derived regenerative cells for male stress urinary incontinence caused by urethral sphincteric deficiency, and the outcomes in the initial cases undergoing periurethral injection of adipose tissue‐derived regenerative cells.

Collaboration


Dive into the Masashi Kato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge