Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Kurachi is active.

Publication


Featured researches published by Masashi Kurachi.


Naturwissenschaften | 2002

The origin of extensive colour polymorphism in Plateumaris sericea (Chrysomelidae, Coleoptera).

Masashi Kurachi; Yasuharu Takaku; Yoshiaki Komiya; Takahiko Hariyama

Abstract. Evidence is presented to demonstrate that colour polymorphism in a beetle arises from structural colours produced by a five-layered reflector in the elytron. The colour of leaf beetles, Plateumaris sericea, ranges across the visible spectrum from blackish-blue to red. The elytra have two distinct layers: epicuticle and exocuticle. Morphological observations reveal that the multilayer structure within the exocuticle differs little among the different colour morphs but the layers within the epicuticle have characteristic thicknesses corresponding to the observed colour. The reflectors, consisting of five layers within the epicuticle, are responsible for all the different colours observed in P. sericea, as shown by theoretical analyses for a multilayer stack, and by showing that removal of the elytral surface, including epicuticle, results in the disappearance of the iridescent colour.


PLOS ONE | 2013

Dynamic Changes of CD44 Expression from Progenitors to Subpopulations of Astrocytes and Neurons in Developing Cerebellum

Masae Naruse; Koji Shibasaki; Shuichi Yokoyama; Masashi Kurachi; Yasuki Ishizaki

We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used immunohistochemistry, in situ hybridization, and FACS to analyze the spatial and temporal expression of CD44 and characterize the CD44-positive cells in the mouse cerebellum during development. CD44 expression was observed not only in astrocyte precursor cells but also in neural stem cells and oligodendrocyte precursor cells (OPCs) at early postnatal stages. CD44 expression in OPCs was shut off during oligodendrocyte differentiation. Interestingly, during development, CD44 expression was limited specifically to Bergmann glia and fibrous astrocytes among three types of astrocytes in cerebellum, and expression in astrocytes was shut off during postnatal development. CD44 expression was also detected in developing Purkinje and granule neurons but was limited to granule neurons in the adult cerebellum. Thus, at early developmental stages of the cerebellum, CD44 was widely expressed in several types of precursor cells, and over the course of development, the expression of CD44 became restricted to granule neurons in the adult.


The Cerebellum | 2012

CD44-Positive Cells Are Candidates for Astrocyte Precursor Cells in Developing Mouse Cerebellum

Na Cai; Masashi Kurachi; Koji Shibasaki; Takayuki Okano-Uchida; Yasuki Ishizaki

Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in preparing APC candidates from developing mouse cerebellum, characterized them in vitro, and found that BMPs are survival factors for these cells.


European Biophysics Journal | 1998

Direct measurement of DNA molecular length in solution using optical tweezers: detection of looping due to binding protein interactions

Kumiko Sakata-Sogawa; Masashi Kurachi; Kazuhiro Sogawa; Yoshiaki Fujii-Kuriyama; Hideo Tashiro

Abstract DNA looping is caused by the interaction between DNA binding proteins located at separate positions on a DNA molecule and may play an important role in transcription regulation. We have developed a system to stretch single DNA molecules and to measure changes in molecular length. DNA molecules were prepared and 5′ end-labeled by PCR amplification. Two beads and the intervening DNA molecule were trapped and manipulated independently with dual trap optical tweezers. The trapped DNA molecule was then stretched and the extension (the distance between the two beads) was measured. The extension at the specific tension force of 30 pN was calculated and used as a molecular length. The molecular length was found to be proportional to the base pair number. The rise per residue was calculated to be 3.31±0.05 Å. The length measurement was applied to DNA fragments containing GC box sequences at two different locations separated by a distance of 2.428 kbp. The addition of GC box binding transcription factor Sp1 shortened the molecular length, suggesting DNA looping forms as a result of interaction between transcription factors.


Journal of Neuroscience Research | 2005

Role of Ser50 phosphorylation in SCG10 regulation of microtubule depolymerization

Tetsuya Togano; Masashi Kurachi; Michitoshi Watanabe; Gabriele Grenningloh; Michihiro Igarashi

Members of the stathmin‐like protein family depolymerize microtubules (MTs), probably due to the ability of each stathmin monomer to bind two tubulin heterodimers in a complex (T2S complex). SCG10, a member of this family, is localized in the growth cone of neurons. It has four identified sites of serine phosphorylation (S50, S63, S73, and S97). Of these, S50 and S97 are phosphorylated by cAMP‐dependent protein kinase, an enzyme involved in growth cone guidance. When the equivalent sites in stathmins are phosphorylated, they lose their ability to depolymerize MTs. We investigated the specific role of the two cAMP‐dependent protein kinase (PKA) phosphorylation sites in SCG10. A mutant of SCG10 phosphorylated only on S50 retained the ability to depolymerize MTs, but SCG10 phosphorylated on S97 or on both S50 and S97 lost MT‐depolymerizing activity. Surface plasmon resonance studies revealed that the phosphorylation of SCG10 at these sites reduced the tubulin heterodimer binding, mainly due to a reduced rate of association. In particular, compared to the two other phosphorylated forms, SCG10 phosphorylated at S50 had a significantly smaller dissociation constant for the binding of the first tubulin heterodimer and larger association and dissociation rate constants for the binding of the second heterodimer. This indicates that the phosphorylation of S50 compensates for the effect of phosphorylation at other sites by modulating T2S complex formation. Furthermore, these results suggest that S50‐P maintains MT‐depolymerizing activity, which indicates that the biological functions of phosphorylation at S50 and S97 are different.


PLOS ONE | 2012

Localization of Acetylcholine-Related Molecules in the Retina: Implication of the Communication from Photoreceptor to Retinal Pigment Epithelium

Hidetaka Matsumoto; Koji Shibasaki; Motokazu Uchigashima; Amane Koizumi; Masashi Kurachi; Yasuhiro Moriwaki; Hidemi Misawa; Koichiro Kawashima; Masahiko Watanabe; Shoji Kishi; Yasuki Ishizaki

It has been long speculated that specific signals are transmitted from photoreceptors to the retinal pigment epithelium (RPE). However, such signals have not been identified. In this study, we examined the retinal expression and localization of acetylcholine-related molecules as putative candidates for these signals. Previous reports revealed that α7 nicotinic acetylcholine receptors (nAChRs) are present in the microvilli of RPE cells that envelope the tips of photoreceptor outer segments (OS). Secreted mammalian leukocyte antigen 6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP-1) is a positive allosteric modulator of the α7 nAChR. Therefore, we first focused on the expression of SLURP-1. SLURP-1 mRNA was expressed in the outer nuclear layer, which is comprised of photoreceptor cell bodies. SLURP-1 immunoreactivity co-localized with rhodopsin and S-opsin in photoreceptor OS, while choline acetyltransferase (ChAT) and high affinity choline transporter (CHT-1) were also expressed in photoreceptor OS. Immunoelectron microscopy identified that the majority of SLURP-1 was localized to the plasma membranes of photoreceptor OS. These results provide evidence that SLURP-1 is synthesized in photoreceptor cell bodies and transported to photoreceptor OS, where SLURP-1 may also be secreted. Our findings suggest that photoreceptor OS communicate via neurotransmitters such as ACh and SLURP-1, while RPE cells might receive these signals through α7 nAChRs in their microvilli.


PLOS ONE | 2016

Extracellular Vesicles from Vascular Endothelial Cells Promote Survival, Proliferation and Motility of Oligodendrocyte Precursor Cells

Masashi Kurachi; Masahiko Mikuni; Yasuki Ishizaki

We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis. Removal of EVs from the CM by ultracentrifugation reduced its inhibitory effect on OPC apoptosis. To confirm whether EVs derived from MVECs are taken up by cultured OPCs, we labeled EVs with PKH67, a fluorescent dye, and added them to OPC cultures. Many vesicular structures labeled with PKH67 were found within OPCs immediately after their addition. Next we examined the effect of MVEC-derived EVs on OPC behaviors. After 2 days in culture with EVs, there was significantly less pyknotic and more BrdU-positive OPCs when compared to control. We also examined the effect of EVs on motility of OPCs. OPCs migrated longer in the presence of EVs when compared to control. To examine whether these effects on cultured OPCs are shared by EVs from endothelial cells, we prepared EVs from conditioned media of several types of endothelial cells, and tested their effects on cultured OPCs. EVs from all types of endothelial cells we examined reduced apoptosis of OPCs and promoted their motility. Identification of the molecules contained in EVs from endothelial cells may prove helpful for establishment of effective therapies for demyelinating diseases.


Brain Research | 2012

Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage

Sandra Puentes; Masashi Kurachi; Koji Shibasaki; Masae Naruse; Yuhei Yoshimoto; Masahiko Mikuni; Hideaki Imai; Yasuki Ishizaki

Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patients life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hanks balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.


PLOS ONE | 2016

Blood Transcriptomic Markers in Patients with Late-Onset Major Depressive Disorder

Shigeo Miyata; Masashi Kurachi; Yoshiko Okano; Noriko Sakurai; Ayumi Kobayashi; Kenichiro Harada; Hirotaka Yamagata; Koji Matsuo; Keisuke Takahashi; Kosuke Narita; Masato Fukuda; Yasuki Ishizaki; Masahiko Mikuni

We investigated transcriptomic markers of late-onset major depressive disorder (LOD; onset age of first depressive episode ≥ 50 years) from the genes expressed in blood cells and identified state-dependent transcriptomic markers in these patients. We assessed the genes expressed in blood cells by microarray and found that the expression levels of 3,066 probes were state-dependently changed in the blood cells of patients with LOD. To select potential candidates from those probes, we assessed the genes expressed in the blood of an animal model of depression, ovariectomized female mice exposed to chronic ultra-mild stress, by microarray and cross-matched the differentially expressed genes between the patients and the model mice. We identified 14 differentially expressed genes that were similarly changed in both patients and the model mice. By assessing statistical significance using real-time quantitative PCR (RT-qPCR), the following 4 genes were selected as candidates: cell death-inducing DFFA-like effector c (CIDEC), ribonuclease 1 (RNASE1), solute carrier family 36 member-1 (SLC36A1), and serine/threonine/tyrosine interacting-like 1 (STYXL1). The discriminating ability of these 4 candidate genes was evaluated in an independent cohort that was validated. Among them, CIDEC showed the greatest discriminant validity (sensitivity 91.3% and specificity 87.5%). Thus, these 4 biomarkers should be helpful for properly diagnosing LOD.


Journal of Neuroscience Research | 1997

DIRECT VISUALIZATION AND CHARACTERIZATION OF STABLE MICROTUBULES FROM THE NEURITES OF CULTURED DORSAL ROOT GANGLION CELLS

Tomoko Tashiro; Yoshiaki Komiya; Masashi Kurachi; Mahito Kikumoto; Hideo Tashiro

We tested the stability of microtubules (MTs) in the neurites of cultured dorsal root ganglion cells by dissolving the cytoplasmic membrane with detergent and exposing them to defined extracellular medium under observation with a video‐enhanced differential interference contrast (DIC) microscope. Smooth cytoplasmic filaments visualized after membrane removal were suggested to be MTs by the preservation of all of the filaments in the presence but not in the absence of taxol. They were further confirmed to be MTs by specific immunostaining with anti‐tubulin antibody. A significant number of MTs in the established neurites of 6‐day‐old cultures remained longer than 10 min after membrane removal while MTs in the Schwann cell processes or in the distal regions of the growth cone‐bearing neurites of 3‐day‐old cultures disappeared within 2 min. A population of very stable MTs persisting longer than 30 min was also found specifically in the 6‐day‐old cultures. Association with other structures or bundling seemed to stabilize the MTs to some degree. The most stable MTs, however, were not associated with some structure along the length but were mainly anchored at points, suggesting that specific point attachments may be another important mechanism operating in MT stabilization. The present method is thus capable of directly demonstrating the unusual stability of neuritic MTs, and provides a new system for further investigation on the mechanism of stabilization. J. Neurosci. Res. 50:81–93, 1997.

Collaboration


Dive into the Masashi Kurachi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge