Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masato Ohtsuka is active.

Publication


Featured researches published by Masato Ohtsuka.


BMC Genomics | 2008

Major histocompatibility complex (Mhc) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6

Masato Ohtsuka; Hidetoshi Inoko; Jerzy K. Kulski; Shinichi Yoshimura

BackgroundThe mouse has more than 30 Major histocompatibility complex (Mhc) class Ib genes, most of which exist in the H2 region of chromosome 17 in distinct gene clusters. Although recent progress in Mhc research has revealed the unique roles of several Mhc class Ib genes in the immune and non-immune systems, the functions of many class Ib genes have still to be elucidated. To better understand the roles of class Ib molecules, we have characterized their gene duplication, organization and expression patterns within the H2 region of the mouse strain C57BL/6.ResultsThe genomic organization of the H2-Q, -T and -M regions was analyzed and 21 transcribed Mhc class Ib genes were identified within these regions. Dot-plot and phylogenetic analyses implied that the genes were generated by monogenic and/or multigenic duplicated events. To investigate the adult tissue, embryonic and placental expressions of these genes, we performed RT-PCR gene expression profiling using gene-specific primers. Both tissue-wide and tissue-specific gene expression patterns were obtained that suggest that the variations in the gene expression may depend on the genomic location of the duplicated genes as well as locus specific mechanisms. The genes located in the H2-T region at the centromeric end of the cluster were expressed more widely than those at the telomeric end, which showed tissue-restricted expression in spite of nucleotide sequence similarities among gene paralogs.ConclusionDuplicated Mhc class Ib genes located in the H2-Q, -T and -M regions are differentially expressed in a variety of developing and adult tissues. Our findings form the basis for further functional validation studies of the Mhc class Ib gene expression profiles in specific tissues, such as the brain. The duplicated gene expression results in combination with the genome analysis suggest the possibility of long-range regulation of H2-T gene expression and/or important, but as yet unidentified nucleotide changes in the promoter or enhancer regions of the genes. Since the Mhc genomic region has diversified among mouse strains, it should be a useful model region for comparative analyses of the relationships between duplicated gene organization, evolution and the regulation of expression patterns.


Nature Genetics | 2009

A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice

Chikara Kokubu; Kyoji Horie; Koichiro Abe; Ryuji Ikeda; Sumi Mizuno; Yoshihiro Uno; Sanae Ogiwara; Masato Ohtsuka; Ayako Isotani; Masaru Okabe; Kenji Imai; Junji Takeda

A large cis-regulatory landscape is a common feature of vertebrate genomes, particularly at key developmental gene loci with finely tuned expression patterns. Existing genetic tools for surveying large genomic regions of interest spanning over hundreds of kilobases are limited. Here we propose a chromosomal engineering strategy exploiting the local hopping trait of the Sleeping Beauty transposon in the mouse genome. We generated embryonic stem cells with a targeted integration of the transposon vector, carrying an enhancer-detecting lacZ reporter and loxP cassette, into the developmentally critical Pax1 gene locus, followed by efficient local transpositions, nested deletion formation and derivation of embryos by tetraploid complementation. Comparative reporter expression analysis among different insertion/deletion embryos substantially facilitated long-range cis-regulatory element mapping in the genomic neighborhood and demonstrated the potential of the transposon-based approach as a versatile tool for exploration of defined genomic intervals of functional or clinical relevance, such as disease-associated microdeletions.


Nucleic Acids Research | 2010

Pronuclear injection-based mouse targeted transgenesis for reproducible and highly efficient transgene expression

Masato Ohtsuka; Sanae Ogiwara; Hiromi Miura; Akiko Mizutani; Takayuki Warita; Masahiro Sato; Kenji Imai; Katsuto Hozumi; Takehito Sato; Masafumi Tanaka; Minoru Kimura; Hidetoshi Inoko

Mouse transgenesis has proven invaluable for analysis of gene function and generation of human disease models. We describe here the development of a pronuclear injection-based targeted transgenesis (PITT) system, involving site-specific integration in fertilized eggs. The system was applied to two different genomic target loci to generate a series of transgenic lines including fluorescent mice, which reproducibly displayed strong, ubiquitous and stable transgene expression. We also demonstrated that knockdown mice could be readily generated by PITT by taking advantage of the reproducible and highly efficient expression system. The PITT system, which circumvents the problem of unpredictable and unstable transgene expression of conventional random-integration transgenic mice, reduces the time, cost and effort needed to generate transgenic mice, and is potentially applicable to both in vivo ‘gain-of-function’ and ‘loss-of-function’ studies.


Scientific Reports | 2015

CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA

Hiromi Miura; Channabasavaiah B. Gurumurthy; Takehito Sato; Masahiro Sato; Masato Ohtsuka

Knockdown mouse models, where gene dosages can be modulated, provide valuable insights into gene function. Typically, such models are generated by embryonic stem (ES) cell-based targeted insertion, or pronuclear injection, of the knockdown expression cassette. However, these methods are associated with laborious and time-consuming steps, such as the generation of large constructs with elements needed for expression of a functional RNAi-cassette, ES-cell handling, or screening for mice with the desired knockdown effect. Here, we demonstrate that reliable knockdown models can be generated by targeted insertion of artificial microRNA (amiRNA) sequences into a specific locus in the genome [such as intronic regions of endogenous eukaryotic translation elongation factor 2 (eEF-2) gene] using the Clustered Regularly Interspaced Short Palindromic Repeats/Crispr associated 9 (CRISPR/Cas9) system. We used in vitro synthesized single-stranded DNAs (about 0.5-kb long) that code for amiRNA sequences as repair templates in CRISPR/Cas9 mutagenesis. Using this approach we demonstrate that amiRNA cassettes against exogenous (eGFP) or endogenous [orthodenticle homeobox 2 (Otx2)] genes can be efficiently targeted to a predetermined locus in the genome and result in knockdown of gene expression. We also provide a strategy to establish conditional knockdown models with this method.


Scientific Reports | 2015

GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice.

Gou Takahashi; Channabasavaiah B. Gurumurthy; Kenta Wada; Hiromi Miura; Masahiro Sato; Masato Ohtsuka

Microinjection is considered the gold standard technique for delivery of nucleic acids (NAs; transgenes or genome editing tools such as CRISPR/Cas9 systems) into embryos, for creating genetically modified organisms. It requires sophisticated equipment as wel as well-trained and highly skilled personnel to perform the micro-injection technique. Here, we describe a novel and simple microinjection-independent technique, called Genome-editing via Oviductal Nucleic Acids Delivery (GONAD). Using GONAD, we show that NAs (e.g., eGFP mRNA or Cas9 mRNA/sgRNAs) can be effectively delivered to pre-implantation embryos within the intact mouse oviduct by a simple electroporation method, and result in the desired genetic modification in the embryos. Thus GONAD can bypass many complex steps in transgenic technology such as isolation of zygotes, microinjection of NAs into them, and their subsequent transfer to pseudo-pregnant animals. Furthermore, this method can potentially be used for genome editing in species other than mice.


Current protocols in human genetics | 2014

Mouse Genome Editing Using the CRISPR/Cas System

Donald W. Harms; Rolen M. Quadros; Davide Seruggia; Masato Ohtsuka; Gou Takahashi; Lluís Montoliu; Channabasavaiah B. Gurumurthy

The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much more quickly than the previously used techniques, and, more importantly, multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one‐cell mouse embryos to create knockout or knock‐in mouse models. Curr. Protoc. Hum. Genet. 83:15.7.1‐15.7.27.


Xenotransplantation | 2014

The combinational use of CRISPR/Cas9‐based gene editing and targeted toxin technology enables efficient biallelic knockout of the α‐1,3‐galactosyltransferase gene in porcine embryonic fibroblasts

Masahiro Sato; Kazuchika Miyoshi; Yozo Nagao; Yohei Nishi; Masato Ohtsuka; Shingo Nakamura; Takayuki Sakurai; Satoshi Watanabe

The recent development of the type II clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has enabled genome editing of mammalian genomes including those of mice and human; however, its applicability and efficiency in the pig have not been studied in depth. Here, using the CRISPR/Cas9 system, we aimed to destroy the function of the porcine α‐1,3‐galactosyltransferase (α‐GalT) gene (GGTA1) whose product is responsible for the synthesis of the α‐Gal epitope, a causative agent for hyperacute rejection upon pig‐to‐human xenotransplantation.


International Journal of Molecular Sciences | 2015

Direct Injection of CRISPR/Cas9-Related mRNA into Cytoplasm of Parthenogenetically Activated Porcine Oocytes Causes Frequent Mosaicism for Indel Mutations

Masahiro Sato; Miyu Koriyama; Satoshi Watanabe; Masato Ohtsuka; Takayuki Sakurai; Emi Inada; Issei Saitoh; Shingo Nakamura; Kazuchika Miyoshi

Some reports demonstrated successful genome editing in pigs by one-step zygote microinjection of mRNA of CRISPR/Cas9-related components. Given the relatively long gestation periods and the high cost of housing, the establishment of a single blastocyst-based assay for rapid optimization of the above system is required. As a proof-of-concept, we attempted to disrupt a gene (GGTA1) encoding the α-1,3-galactosyltransferase that synthesizes the α-Gal epitope using parthenogenetically activated porcine oocytes. The lack of α-Gal epitope expression can be monitored by staining with fluorescently labeled isolectin BS-I-B4 (IB4), which binds specifically to the α-Gal epitope. When oocytes were injected with guide RNA specific to GGTA1 together with enhanced green fluorescent protein (EGFP) and human Cas9 mRNAs, 65% (24/37) of the developing blastocysts exhibited green fluorescence, although almost all (96%, 23/24) showed a mosaic fluorescent pattern. Staining with IB4 revealed that the green fluorescent area often had a reduced binding activity to IB4. Of the 16 samples tested, six (five fluorescent and one non-fluorescent blastocysts) had indel mutations, suggesting a correlation between EGFP expression and mutation induction. Furthermore, it is suggested that zygote microinjection of mRNAs might lead to the production of piglets with cells harboring various mutation types.


Mechanisms of Development | 2004

Possible roles of zic1 and zic4, identified within the medaka Double anal fin (Da) locus, in dorsoventral patterning of the trunk-tail region (related to phenotypes of the Da mutant).

Masato Ohtsuka; Natsuko Kikuchi; Hayato Yokoi; Masato Kinoshita; Yuko Wakamatsu; Kenjiro Ozato; Hiroyuki Takeda; Hidetoshi Inoko; Minoru Kimura

Double anal fin (Da) is a spontaneous medaka mutant that exhibits an unique ventralizing phenotype, a mirror-image duplication across the lateral midline in the dorsal trunk-tail region. In the mutant, early D-V specification appears normal but the altered phenotype becomes evident during late embryogenesis. In this study, we genetically specified the mutation to a 174-kb region harboring two zinc-finger type transcription factors, zic1 and zic4, and compared the genomic structures of this region between wild-type and Da mutant fish. No mutation was found in the coding regions of either gene of the mutant, while two fragments, 324 bp and 3-4 kb long, were found inserted downstream of zic1 and zic4, respectively. Probably as a result of this, the expression of both genes is lost in the derivatives of the dorsal (epaxial) somite and the region dorsal to the terminal axis bending. All these tissues are morphologically affected or become ventralized in the mutants. In contrast, the expression in the head region and dorsal spinal cord remained unchanged. Detailed characterization of Da phenotypes revealed a novel defect in the axial skeleton (spina bifida occulta) that was also found in zic1-deficient mice. Finally, zic1-morpholino injection partially phenocopied early Da phenotypes. These findings strongly suggest that zic1 and/or zic4 are required for dorsal identity in the trunk-tail region and that loss of their expression in the epaxial somite derivatives and tail region causes the Da phenotypes.


Methods | 2017

Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes

Ashley M. Jacobi; Garrett Richard Rettig; Rolf Turk; Michael A. Collingwood; Sarah A. Zeiner; Rolen M. Quadros; Donald W. Harms; Paul J. Bonthuis; Christopher Gregg; Masato Ohtsuka; Channabasavaiah B. Gurumurthy; Mark A. Behlke

Genome editing using the CRISPR/Cas9 system requires the presence of guide RNAs bound to the Cas9 endonuclease as a ribonucleoprotein (RNP) complex in cells, which cleaves the host cell genome at sites specified by the guide RNAs. New genetic material may be introduced during repair of the double-stranded break via homology dependent repair (HDR) if suitable DNA templates are delivered with the CRISPR components. Early methods used plasmid or viral vectors to make these components in the host cell, however newer approaches using recombinant Cas9 protein with synthetic guide RNAs introduced directly as an RNP complex into cells shows faster onset of action with fewer off-target effects. This approach also enables use of chemically modified synthetic guide RNAs that have improved nuclease stability and reduces the risk of triggering an innate immune response in the host cell. This article provides detailed methods for genome editing using the RNP approach with synthetic guide RNAs using lipofection or electroporation in mammalian cells or using microinjection in murine zygotes, with or without addition of a single-stranded HDR template DNA.

Collaboration


Dive into the Masato Ohtsuka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Channabasavaiah B. Gurumurthy

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shingo Nakamura

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolen M. Quadros

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge