Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masatoshi Ichihara is active.

Publication


Featured researches published by Masatoshi Ichihara.


The EMBO Journal | 1996

Mouse oncostatin M: an immediate early gene induced by multiple cytokines through the JAK-STAT5 pathway.

Akihiko Yoshimura; Masatoshi Ichihara; Ichiko Kinjyo; Maiko Moriyama; Neat G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Takahiko Hara; Atsushi Miyajima

Oncostatin M (OSM) is a member of the interleukin‐6 (IL6)‐related cytokine subfamily that includes IL6, IL11, leukemia inhibitory factor (LIF), ciliary neurotrophic factor and cardiotrophin‐1. While human OSM has been characterized and the bovine OSM gene was recently cloned, the murine counterpart had not been identified. Here we describe molecular cloning of murine OSM as an immediate early gene induced by a subset of cytokines including IL2, IL3 and erythropoietin (EPO) in myeloid and lymphoid cell lines. The induction kinetics of OSM are rapid and transient, reaching a maximal level within 30–60 min and decreasing thereafter. Induction of OSM depends on the signals generated by the membrane‐proximal region of the EPO receptor as well as that of the beta chain of the IL3/GM‐CSF receptor, which activate JAK2 and STAT5. About 100 bases upstream of the transcription initiation site of the OSM gene contains a possible STAT5 binding site which is essential for IL2, IL3 and EPO‐dependent promoter activity of the OSM gene. Expression of STAT5 and the EPO receptor in COS cells conferred EPO‐dependent activation of the OSM promoter. Moreover, the mutant IL2 receptor lacking the ability to activate STAT5 induced c‐myc but failed to induce OSM. Thus OSM is one of the common targets of a subset of cytokines that activate STAT5. The murine OSM gene is located near to the LIF gene, expressed at high levels in bone marrow and possesses similar biological activity to human OSM. Identification of murine OSM as a cytokine‐inducible immediate early gene provides a new insight into the physiological function of this unique cytokine.


Oncogene | 2000

Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor.

Hironori Hayashi; Masatoshi Ichihara; Toshihide Iwashita; Hideki Murakami; Yohei Shimono; Kumi Kawai; Kei Kurokawa; Yoshiki Murakumo; Tsuneo Imai; Hiroomi Funahashi; Akimasa Nakao; Masahide Takahashi

Glial cell line derived neurotrophic factor (GDNF) signals through a multicomponent receptor complex consisting of RET receptor tyrosine kinase and a member of GDNF family receptor α (GFRα). Recently, it was shown that tyrosine 1062 in RET represents a binding site for SHC adaptor proteins and is crucial for both RAS/mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/AKT signaling pathways. In the present study, we characterized how these two pathways diverge from tyrosine 1062, using human neuroblastoma and primitive neuroectodermal tumor cell lines expressing RET at high levels. In response to GDNF stimulation, SHC bound to GAB1 and GRB2 adaptor proteins as well as RET, and SHC and GAB1 were highly phosphorylated on tyrosine. The complex formation consisting of SHC, GAB1 and GRB2 was almost abolished by replacement of tyrosine 1062 in RET with phenylalanine. Tyrosine-phosphorylated GAB1 was also associated with p85 subunit of PI3-K, resulting in PI3-K and AKT activation, whereas SHC-GRB2-SOS complex was responsible for the RAS/ERK signaling pathway. These results suggested that the RAS and PI3-K pathways activated by GDNF bifurcate mainly through SHC bound to tyrosine 1062 in RET. Furthermore, using luciferase reporter-gene assays, we found that the RAS/ERK and PI3-K signaling pathways are important for activation of CREB and NF-κB in GDNF-treated cells, respectively.


Pituitary | 2006

RET and neuroendocrine tumors

Yoshiki Murakumo; Mayumi Jijiwa; Naoya Asai; Masatoshi Ichihara; Masahide Takahashi

The RET proto-oncogene encodes a receptor tyrosine kinase that is a main component of the signaling pathway activated by the glial cell line-derived neurotrophic factor family ligands. Gene targeting studies revealed that signaling through RET plays a crucial role in neuronal and renal organogenesis. It is well-known that germline mutations in RET lead to the human inherited diseases, multiple endocrine neoplasia type 2 (MEN 2) and Hirschsprung’s disease, and that somatic rearrangements of RET cause papillary thyroid carcinoma. Due to marked advances in understanding of the molecular mechanisms of the development of MEN 2, a consensus on MEN 2 management associated with RET status is being reached and currently put into general use as a guideline. In this review, we summarize progress in the study of RET from bench to bedside, focusing on pathophysiology of neuroendocrine tumors.


Neuroscience Letters | 2009

Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease

Yuan Fu; Mikako Ito; Yasunori Fujita; Masafumi Ito; Masatoshi Ichihara; Akio Masuda; Yumi Suzuki; Satoshi Maesawa; Yasukazu Kajita; Masaaki Hirayama; Ikuroh Ohsawa; Shigeo Ohta; Kinji Ohno

Molecular hydrogen serves as an antioxidant that reduces hydroxyl radicals, but not the other reactive oxygen and nitrogen species. In the past year, molecular hydrogen has been reported to prevent or ameliorate eight diseases in rodents and one in human associated with oxidative stress. In Parkinsons disease, mitochondrial dysfunction and the associated oxidative stress are major causes of dopaminergic cell loss in the substantia nigra. We examined effects of approximately 50%-saturated molecular hydrogen in drinking water before or after the stereotactic surgery on 6-hydroxydopamine-induced nigrostrital degeneration in a rat model of Parkinsons disease. Methamphetamine-induced behavioral analysis showed that molecular hydrogen prevented both the development and progression of the nigrostrital degeneration. Tyrosine hydroxylase staining of the substantia nigra and striatum also demonstrated that pre- and post-treatment with hydrogen prevented the dopaminergic cell loss. Our studies suggest that hydrogen water is likely able to retard the development and progression of Parkinsons disease.


Cancer Science | 2005

The RET proto-oncogene : a molecular therapeutic target in thyroid cancer

Yoshinori Kodama; Naoya Asai; Kumi Kawai; Mayumi Jijiwa; Yoshiki Murakumo; Masatoshi Ichihara; Masahide Takahashi

The RET proto‐oncogene is responsible for the development of several human inherited and non‐inherited diseases. Germline point mutations were identified in multiple endocrine neoplasia types 2A and 2B, and familial medullary thyroid carcinoma. More than 10 rearranged forms of RET, referred to as RET/PTC 1–9, ELKS/RET and RFP/RET, have been cloned from sporadic and radiation‐associated papillary thyroid carcinomas. These mutations induced oncogenic activation of RET tyrosine kinase by different mechanisms. To date, various kinds of therapeutic approaches have been developed for the treatment of RET‐associated cancers, including tyrosine kinase inhibitors, gene therapy with dominant negative RET mutants, and RNA interference to abrogate oncogenic mutant RET expression. RET and some signaling molecules that function downstream of RET could be potential targets for the development of selective cancer therapeutics. (Cancer Sci 2005; 96: 143–148)


Molecular and Cellular Biology | 2004

A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia.

Mayumi Jijiwa; Toshifumi Fukuda; Kumi Kawai; Akari Nakamura; Kei Kurokawa; Yoshiki Murakumo; Masatoshi Ichihara; Masahide Takahashi

ABSTRACT The Ret receptor tyrosine kinase plays a crucial role in the development of the enteric nervous system and the kidney. Tyrosine 1062 in Ret represents a binding site for the phosphotyrosine-binding domains of several adaptor and effector proteins that are important for the activation of intracellular signaling pathways, such as the RAS/ERK, phosphatidylinositol 3-kinase/AKT, and Jun-associated N-terminal kinase pathways. To investigate the importance of tyrosine 1062 for organogenesis in vivo, knock-in mice in which tyrosine 1062 in Ret was replaced with phenylalanine were generated. Although homozygous knock-in mice were born normally, they died by day 27 after birth and showed growth retardation. The development of the enteric nervous system was severely impaired in homozygous mutant mice, about 40% of which lacked enteric neurons in the whole intestinal tract, as observed in Ret-deficient mice. The rest of the mutant mice developed enteric neurons in the intestine to various extents, although the size and number of ganglion cells were significantly reduced. Unlike Ret-deficient mice, a small kidney developed in all knock-in mice, accompanying a slight histological change. The reduction of kidney size was due to a decrease of ureteric bud branching during embryogenesis. Thus, these findings demonstrated that the signal via tyrosine 1062 plays an important role in histogenesis of the enteric nervous system and nephrogenesis.


Biochemical and Biophysical Research Communications | 2009

Molecular hydrogen suppresses FcεRI-mediated signal transduction and prevents degranulation of mast cells

Tomohiro Itoh; Yasunori Fujita; Mikako Ito; Akio Masuda; Kinji Ohno; Masatoshi Ichihara; Toshio Kojima; Yoshinori Nozawa; Masafumi Ito

Molecular hydrogen ameliorates oxidative stress-associated diseases in animal models. We found that oral intake of hydrogen-rich water abolishes an immediate-type allergic reaction in mice. Using rat RBL-2H3 mast cells, we demonstrated that hydrogen attenuates phosphorylation of the FcepsilonRI-associated Lyn and its downstream signal transduction, which subsequently inhibits the NADPH oxidase activity and reduces the generation of hydrogen peroxide. We also found that inhibition of NADPH oxidase attenuates phosphorylation of Lyn in mast cells, indicating the presence of a feed-forward loop that potentiates the allergic responses. Hydrogen accordingly inhibits all tested signaling molecule(s) in the loop. Hydrogen effects have been solely ascribed to exclusive removal of hydroxyl radical. In the immediate-type allergic reaction, hydrogen exerts its beneficial effect not by its radical scavenging activity but by modulating a specific signaling pathway. Effects of hydrogen in other diseases are possibly mediated by modulation of yet unidentified signaling pathways. Our studies also suggest that hydrogen is a gaseous signaling molecule like nitric oxide.


American Journal of Pathology | 2002

Characterization of Gene Expression Induced by RET with MEN2A or MEN2B Mutation

Tsuyoshi Watanabe; Masatoshi Ichihara; Mizuo Hashimoto; Keiko Shimono; Yoshie Shimoyama; Tetsuro Nagasaka; Yoshiki Murakumo; Hideki Murakami; Hideshi Sugiura; Hisashi Iwata; Naoki Ishiguro; Masahide Takahashi

Germ-line point mutations of the RET gene are responsible for multiple endocrine neoplasia (MEN) type 2A and 2B that develop medullary thyroid carcinoma and pheochromocytoma. We performed a differential display analysis of gene expression using NIH 3T3 cells expressing the RET-MEN2A or RET-MEN2B mutant proteins. As a consequence, we identified 10 genes induced by both mutant proteins and eight genes repressed by them. The inducible genes include cyclin D1, cathepsins B and L, and cofilin genes that are known to be involved in cell growth, tumor progression, and invasion. In contrast, the repressed genes include type I collagen, lysyl oxidase, annexin I, and tissue inhibitor of matrix metalloproteinase 3 (TIMP3) genes that have been implicated in tumor suppression. In addition, six RET-MEN2A- and five RET-MEN2B-inducible genes were identified. Among 21 genes induced by RET-MEN2A and/or RET-MEN2B, six genes including cyclin D1, cathepsin B, cofilin, ring finger protein 11 (RNF11), integrin-alpha6, and stanniocalcin 1 (STC1) genes were also induced in TGW human neuroblastoma cells in response to glial cell line-derived neurotrophic factor stimulation. Because the STC1 gene was found to be highly induced by both RET-MEN2B and glial cell line-derived neurotrophic factor stimulation, and the expression of its product was detected in medullary thyroid carcinoma with the MEN2B mutation by immunohistochemistry, this may suggest a possible role for STC1 in the development of MEN 2B phenotype.


Nucleic Acids Research | 2007

Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities

Masatoshi Ichihara; Yoshiki Murakumo; Akio Masuda; Toru Matsuura; Naoya Asai; Mayumi Jijiwa; Maki Ishida; Jun Shinmi; Hiroshi Yatsuya; Shanlou Qiao; Masahide Takahashi; Kinji Ohno

We developed a simple algorithm, i-Score (inhibitory-Score), to predict active siRNAs by applying a linear regression model to 2431 siRNAs. Our algorithm is exclusively comprised of nucleotide (nt) preferences at each position, and no other parameters are taken into account. Using a validation dataset comprised of 419 siRNAs, we found that the prediction accuracy of i-Score is as good as those of s-Biopredsi, ThermoComposition21 and DSIR, which employ a neural network model or more parameters in a linear regression model. Reynolds and Katoh also predict active siRNAs efficiently, but the numbers of siRNAs predicted to be active are less than one-eighth of that of i-Score. We additionally found that exclusion of thermostable siRNAs, whose whole stacking energy (ΔG) is less than −34.6 kcal/mol, improves the prediction accuracy in i-Score, s-Biopredsi, ThermoComposition21 and DSIR. We also developed a universal target vector, pSELL, with which we can assay an siRNA activity of any sequence in either the sense or antisense direction. We assayed 86 siRNAs in HEK293 cells using pSELL, and validated applicability of i-Score and the whole ΔG value in designing siRNAs.


Oxidative Medicine and Cellular Longevity | 2012

Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases

Kinji Ohno; Mikako Ito; Masatoshi Ichihara; Masafumi Ito

Effects of molecular hydrogen on various diseases have been documented for 63 disease models and human diseases in the past four and a half years. Most studies have been performed on rodents including two models of Parkinsons disease and three models of Alzheimers disease. Prominent effects are observed especially in oxidative stress-mediated diseases including neonatal cerebral hypoxia; Parkinsons disease; ischemia/reperfusion of spinal cord, heart, lung, liver, kidney, and intestine; transplantation of lung, heart, kidney, and intestine. Six human diseases have been studied to date: diabetes mellitus type 2, metabolic syndrome, hemodialysis, inflammatory and mitochondrial myopathies, brain stem infarction, and radiation-induced adverse effects. Two enigmas, however, remain to be solved. First, no dose-response effect is observed. Rodents and humans are able to take a small amount of hydrogen by drinking hydrogen-rich water, but marked effects are observed. Second, intestinal bacteria in humans and rodents produce a large amount of hydrogen, but an addition of a small amount of hydrogen exhibits marked effects. Further studies are required to elucidate molecular bases of prominent hydrogen effects and to determine the optimal frequency, amount, and method of hydrogen administration for each human disease.

Collaboration


Dive into the Masatoshi Ichihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge