Masatoshi Miyakoshi
Tohoku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masatoshi Miyakoshi.
The EMBO Journal | 2015
Masatoshi Miyakoshi; Yanjie Chao; Jörg Vogel
There is an expanding list of examples by which one mRNA can posttranscriptionally influence the expression of others. This can involve RNA sponges that sequester regulatory RNAs of mRNAs in the same regulon, but the underlying molecular mechanism of such mRNA cross talk remains little understood. Here, we report sponge‐mediated mRNA cross talk in the posttranscriptional network of GcvB, a conserved Hfq‐dependent small RNA with one of the largest regulons known in bacteria. We show that mRNA decay from the gltIJKL locus encoding an amino acid ABC transporter generates a stable fragment (SroC) that base‐pairs with GcvB. This interaction triggers the degradation of GcvB by RNase E, alleviating the GcvB‐mediated mRNA repression of other amino acid‐related transport and metabolic genes. Intriguingly, since the gltIJKL mRNA itself is a target of GcvB, the SroC sponge seems to enable both an internal feed‐forward loop to activate its parental mRNA in cis and activation of many trans‐encoded mRNAs in the same pathway. Disabling this mRNA cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources.
The ISME Journal | 2009
Hikaru Suenaga; Yoshinori Koyama; Masatoshi Miyakoshi; Ryo Miyazaki; Hirokazu Yano; Masahiro Sota; Yoshiyuki Ohtsubo; Masataka Tsuda; Kentaro Miyazaki
Several types of environmental bacteria that can aerobically degrade various aromatic compounds have been identified. The catabolic genes in these bacteria have generally been found to form operons, which promote efficient and complete degradation. However, little is known about the degradation pathways in bacteria that are difficult to culture in the laboratory. By functionally screening a metagenomic library created from activated sludge, we had earlier identified 91 fosmid clones carrying genes for extradiol dioxygenase (EDO), a key enzyme in the degradation of aromatic compounds. In this study, we analyzed 38 of these fosmids for the presence and organization of novel genes for aromatics degradation. Only two of the metagenomic clones contained complete degradation pathways similar to those found in known aromatic compound-utilizing bacteria. The rest of the clones contained only subsets of the pathway genes, with novel gene arrangements. A circular 36.7-kb DNA form was assembled from the sequences of clones carrying genes belonging to a novel EDO subfamily. This plasmid-like DNA form, designated pSKYE1, possessed genes for DNA replication and stable maintenance as well as a small set of genes for phenol degradation; the encoded enzymes, phenol hydroxylase and EDO, are capable of the detoxification of aromatic compounds. This gene set was found in 20 of the 38 analyzed clones, suggesting that this ‘detoxification apparatus’ may be widespread in the environment.
Journal of Bacteriology | 2007
Masatoshi Miyakoshi; Masaki Shintani; Tsuguno Terabayashi; Satoshi Kai; Hisakazu Yamane; Hideaki Nojiri
The IncP-7 plasmid pCAR1 of Pseudomonas resinovorans CA10 confers the ability to degrade carbazole upon transfer to the recipient strain P. putida KT2440. We designed a customized whole-genome oligonucleotide microarray to study the coordinated expression of pCAR1 and the chromosome in the transconjugant strain KT2440(pCAR1). First, the transcriptome of KT2440(pCAR1) during growth with carbazole as the sole carbon source was compared to that during growth with succinate. The carbazole catabolic car and ant operons were induced, along with the chromosomal cat and pca genes involved in the catechol branch of the beta-ketoadipate pathway. Additionally, the regulatory gene antR encoding the AraC/XylS family transcriptional activator specific for car and ant operons was upregulated. The characterization of the antR promoter revealed that antR is transcribed from an RpoN-dependent promoter, suggesting that the successful expression of the carbazole catabolic operons depends on whether the chromosome contains the specific RpoN-dependent activator. Next, to analyze whether the horizontal transfer of a plasmid alters the transcription network of its host chromosome, we compared the chromosomal transcriptomes of KT2440(pCAR1) and KT2440 under the same growth conditions. Only subtle changes were caused by the transfer of pCAR1, except for the significant induction of the hypothetical gene PP3700, designated parI, which encodes a putative ParA-like ATPase with an N-terminal Xre-type DNA-binding motif. Further transcriptional analyses showed that the parI promoter was positively regulated by ParI itself and the pCAR1-encoded protein ParA.
Applied Microbiology and Biotechnology | 2003
Hiroshi Habe; Masatoshi Miyakoshi; Jin-Sung Chung; Kano Kasuga; Takako Yoshida; Hideaki Nojiri; Toshio Omori
Abstract. Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene (bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53–62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.
Environmental Microbiology | 2009
Masaki Shintani; Yurika Takahashi; Hiroki Tokumaru; Koji Kadota; Hirofumi Hara; Masatoshi Miyakoshi; Kunihiko Naito; Hisakazu Yamane; Hiromi Nishida; Hideaki Nojiri
Plasmid carriage requires appropriate expression of the genes on the plasmid or host chromosome through cooperative transcriptional regulation. To clarify the impact of plasmid carriage on the host chromosome, we compared the chromosomal RNA maps of plasmid-free and plasmid-containing host strains using the incompatibility group P-7 archetype plasmid pCAR1, which is involved in carbazole degradation, and three distinct Pseudomonas strains. The possession of pCAR1 altered gene expression related to the iron acquisition systems in each host. Expression of the major siderophore pyoverdine was greater in plasmid-containing P. putida KT2440 and P. aeruginosa PAO1 than in the plasmid-free host strains, in part due to the expression of carbazole-degradative genes on pCAR1. The mexEFoprN operon encoding an efflux pump of the resistance-nodulation-cell division family was specifically upregulated by the carriage of pCAR1 in P. putida KT2440, whereas the expression of orthologous genes in the other species remained unaltered. Induction of the mexEFoprN genes increased the resistance of pCAR1-containing KT2440 to chloramphenicol compared with pCAR1-free KT2440. Our findings indicate that the possession of pCAR1 altered the growth rate of the host via the expression of genes on pCAR1 and the host chromosomes.
Journal of Bacteriology | 2010
Hirokazu Yano; Masatoshi Miyakoshi; Kenshiro Ohshima; Michiro Tabata; Yuji Nagata; Masahira Hattori; Masataka Tsuda
To understand the mechanisms for structural diversification of Pseudomonas-derived toluene-catabolic (TOL) plasmids, the complete sequence of a self-transmissible plasmid pDK1 with a size of 128,921 bp from Pseudomonas putida HS1 was determined. Comparative analysis revealed that (i) pDK1 consisted of a 75.6-kb IncP-7 plasmid backbone and 53.2-kb accessory gene segments that were bounded by transposon-associated regions, (ii) the genes for conjugative transfer of pDK1 were highly similar to those of MOB(H) group of mobilizable plasmids, and (iii) the toluene-catabolic (xyl) gene clusters of pDK1 were derived through homologous recombination, transposition, and site-specific recombination from the xyl gene clusters homologous to another TOL plasmid, pWW53. The minireplicons of pDK1 and its related IncP-7 plasmids, pWW53 and pCAR1, that contain replication and partition genes were maintained in all of six Pseudomonas strains tested, but not in alpha- or betaproteobacterial strains. The recipient host range of conjugative transfer of pDK1 was, however, limited to two Pseudomonas strains. These results indicate that IncP-7 plasmids are essentially narrow-host-range and self-transmissible plasmids that encode MOB(H) group-related transfer functions and that the host range of IncP-7-specified conjugative transfer was, unlike the situation in other well-known plasmids, narrower than that of its replication.
Journal of Bacteriology | 2010
Choong-Soo Yun; Chiho Suzuki; Kunihiko Naito; Toshiharu Takeda; Yurika Takahashi; Fumiya Sai; Tsuguno Terabayashi; Masatoshi Miyakoshi; Masaki Shintani; Hiromi Nishida; Hisakazu Yamane; Hideaki Nojiri
Histone-like protein H1 (H-NS) family proteins are nucleoid-associated proteins (NAPs) conserved among many bacterial species. The IncP-7 plasmid pCAR1 is transmissible among various Pseudomonas strains and carries a gene encoding the H-NS family protein, Pmr. Pseudomonas putida KT2440 is a host of pCAR1, which harbors five genes encoding the H-NS family proteins PP_1366 (TurA), PP_3765 (TurB), PP_0017 (TurC), PP_3693 (TurD), and PP_2947 (TurE). Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that the presence of pCAR1 does not affect the transcription of these five genes and that only pmr, turA, and turB were primarily transcribed in KT2440(pCAR1). In vitro pull-down assays revealed that Pmr strongly interacted with itself and with TurA, TurB, and TurE. Transcriptome comparisons of the pmr disruptant, KT2440, and KT2440(pCAR1) strains indicated that pmr disruption had greater effects on the host transcriptome than did pCAR1 carriage. The transcriptional levels of some genes that increased with pCAR1 carriage, such as the mexEF-oprN efflux pump genes and parI, reverted with pmr disruption to levels in pCAR1-free KT2440. Transcriptional levels of putative horizontally acquired host genes were not altered by pCAR1 carriage but were altered by pmr disruption. Identification of genome-wide Pmr binding sites by ChAP-chip (chromatin affinity purification coupled with high-density tiling chip) analysis demonstrated that Pmr preferentially binds to horizontally acquired DNA regions. The Pmr binding sites overlapped well with the location of the genes differentially transcribed following pmr disruption on both the plasmid and the chromosome. Our findings indicate that Pmr is a key factor in optimizing gene transcription on pCAR1 and the host chromosome.
BMC Genomics | 2009
Masatoshi Miyakoshi; Hiromi Nishida; Masaki Shintani; Hisakazu Yamane; Hideaki Nojiri
BackgroundPlasmids are extrachromosomal elements that replicate autonomously, and many can be transmitted between bacterial cells through conjugation. Although the transcription pattern of genes on a plasmid can be altered by a change in host background, the expression range of plasmid genes that will result in phenotypic variation has not been quantitatively investigated.ResultsUsing a microarray with evenly tiled probes at a density of 9 bp, we mapped and quantified the transcripts of the carbazole catabolic plasmid pCAR1 in its original host Pseudomonas resinovorans CA10 and the transconjugant P. putida KT2440(pCAR1) during growth on either carbazole or succinate as the sole carbon source. We identified the operons in pCAR1, which consisted of nearly identical transcription units despite the difference in host background during growth on the same carbon source. In accordance with previous studies, the catabolic operons for carbazole degradation were upregulated during growth on carbazole in both hosts. However, our tiling array results also showed that several operons flanking the transfer gene cluster were transcribed at significantly higher levels in the transconjugant than in the original host. The number of transcripts and the positions of the transcription start sites agreed with our quantitative RT-PCR and primer extension results.ConclusionOur tiling array results indicate that the levels of transcription for the operons on a plasmid can vary by host background. High-resolution mapping using an unbiased tiling array is a valuable tool for the simultaneous identification and quantification of prokaryotic transcriptomes including polycistronic operons and non-coding RNAs.
Journal of Biological Chemistry | 2006
Masatoshi Miyakoshi; Masaaki Urata; Hiroshi Habe; Toshio Omori; Hisakazu Yamane; Hideaki Nojiri
The carbazole catabolic car operons from Pseudomonas resinovorans CA10 and Janthinobacterium sp. J3 have nearly identical nucleotide sequences in their structural and intergenic regions but not in their flanking regions. Transposition of ISPre1 from the anthranilate catabolic ant operon located an inducible promoter Pant upstream of the carCA10 operon, which is regulated by the AraC/XylS family activator AntR in response to anthranilate. The transposed Pant drives transcription of the carCA10 operon, which is composed of the car-AaAaBaBbCAcAdDFECA10 structural genes. Transcriptional fusion truncating Pant upstream of carAaCA10 resulted in constitutive luciferase expression. Primer extension analysis identified a transcription start point of the constitutive mRNA of the carCA10 operon at 385 nucleotides upstream of the carAaCA10 translation start point, and the PcarAa promoter was found. On the other hand, a GntR family regulatory gene carRJ3 is divergently located upstream of the carJ3 operon. The Pu13 promoter, required for inducible transcription of the carJ3 operon in the presence of carbazole, was identified in the region upstream of carAaJ3, which had been replaced with the Pant promoter in the carCA10 operon. Deletion of carRJ3 from a transcriptional fusion resulted in high level constitutive expression from Pu13. Purified CarRJ3 protein bound at two operator sequences OI and OII, showing that CarRJ3 directly represses Pu13 in the absence of its inducer, which was identified as 2-hydroxy-6-oxo-6-(2′-aminophenyl)hexa-2,4-dienoate, an intermediate of the carbazole degradation pathway.
DNA Research | 2015
Hiromi Kato; Hiroshi Mori; Fumito Maruyama; Atsushi Toyoda; Kenshiro Oshima; Ryo Endo; Genki Fuchu; Masatoshi Miyakoshi; Ayumi Dozono; Yoshiyuki Ohtsubo; Yuji Nagata; Masahira Hattori; Asao Fujiyama; Ken Kurokawa; Masataka Tsuda
Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial community in a closed soil microcosm artificially polluted with four aromatic compounds, including phenanthrene, was conducted to investigate the changes in the community structures and gene pools. The pollution led to drastic changes in the community structures and the gene sets for pollutant degradation. Complete degradation of phenanthrene was strongly suggested to occur by the syntrophic metabolism by Mycobacterium and the most proliferating genus, Burkholderia. The community structure at Week 24 (∼12 weeks after disappearance of the pollutants) returned to the structure similar to that before pollution. Our time-course metagenomic analysis of phage genes strongly suggested the involvement of the ‘kill-the-winner’ phenomenon (i.e. phage predation of Burkholderia cells) for the returning of the microbial community structure. The pollution resulted in a decrease in taxonomic diversity and a drastic increase in diversity of gene pools in the communities, showing the functional redundancy and robustness of the communities against chemical disturbance.
Collaboration
Dive into the Masatoshi Miyakoshi's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs