Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masatsugu Hashiguchi is active.

Publication


Featured researches published by Masatsugu Hashiguchi.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Lotus japonicus nodulation is photomorphogenetically controlled by sensing the red/far red (R/FR) ratio through jasmonic acid (JA) signaling

Akihiro Suzuki; Lalith Suriyagoda; Tamaki Shigeyama; Akiyoshi Tominaga; Masayo Sasaki; Yoshimi Hiratsuka; Aya Yoshinaga; Susumu Arima; Sakae Agarie; Tatsuya Sakai; Sayaka Inada; Yusuke Jikumaru; Yuji Kamiya; Toshiki Uchiumi; Mikiko Abe; Masatsugu Hashiguchi; Ryo Akashi; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Ann M. Hirsch

Light is critical for supplying carbon to the energetically expensive, nitrogen-fixing symbiosis between legumes and rhizobia. Here, we show that phytochrome B (phyB) is part of the monitoring system to detect suboptimal light conditions, which normally suppress Lotus japonicus nodule development after Mesorhizobium loti inoculation. We found that the number of nodules produced by L. japonicus phyB mutants is significantly reduced compared with the number produced of WT Miyakojima MG20. To explore causes other than photoassimilate production, the possibility that local control by the root genotype occurred was investigated by grafting experiments. The results showed that the shoot and not the root genotype is responsible for root nodule formation. To explore systemic control mechanisms exclusive of photoassimilation, we moved WT MG20 plants from white light to conditions that differed in their ratios of low or high red/far red (R/FR) light. In low R/FR light, the number of MG20 root nodules dramatically decreased compared with plants grown in high R/FR, although photoassimilate content was higher for plants grown under low R/FR. Also, the expression of jasmonic acid (JA) -responsive genes decreased in both low R/FR light-grown WT and white light-grown phyB mutant plants, and it correlated with decreased jasmonoyl-isoleucine content in the phyB mutant. Moreover, both infection thread formation and root nodule formation were positively influenced by JA treatment of WT plants grown in low R/FR light and white light-grown phyB mutants. Together, these results indicate that root nodule formation is photomorphogenetically controlled by sensing the R/FR ratio through JA signaling.


Plant Physiology | 2009

Enhanced Nodulation and Nitrogen Fixation in the Abscisic Acid Low-Sensitive Mutant enhanced nitrogen fixation1 of Lotus japonicus

Akiyoshi Tominaga; Maki Nagata; Koichi Futsuki; Hidetoshi Abe; Toshiki Uchiumi; Mikiko Abe; Masatsugu Hashiguchi; Ryo Akashi; Ann M. Hirsch; Susumu Arima; Akihiro Suzuki

The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 μm ABA, we obtained mutants that not only showed increased root nodule number but also enhanced nitrogen fixation. The mutant was designated enhanced nitrogen fixation1 (enf1) and was confirmed to be monogenic and incompletely dominant. The low sensitivity to ABA phenotype was thought to result from either a decrease in the concentration of the plants endogenous ABA or from a disruption in ABA signaling. We determined that the endogenous ABA concentration of enf1 was lower than that of wild-type seedlings, and furthermore, when wild-type plants were treated with abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase, which results in reduced ABA content, the nitrogen fixation activity of abamine-treated plants was elevated to the same levels as enf1. We also determined that production of nitric oxide in enf1 nodules was decreased. We conclude that endogenous ABA concentration not only regulates nodulation but also nitrogen fixation activity by decreasing nitric oxide production in nodules.


Molecular Plant-microbe Interactions | 2010

Identification and Functional Analysis of Type III Effector Proteins in Mesorhizobium loti

Shin Okazaki; Saori Okabe; Miku Higashi; Yoshikazu Shimoda; Shusei Sato; Satoshi Tabata; Masatsugu Hashiguchi; Ryo Akashi; Michael Göttfert; Kazuhiko Saeki

Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, possesses a cluster of genes (tts) that encode a type III secretion system (T3SS). In the presence of heterologous nodD from Rhizobium leguminosarum and a flavonoid naringenin, we observed elevated expression of the tts genes and secretion of several proteins into the culture medium. Inoculation experiments with wild-type and T3SS mutant strains revealed that the presence of the T3SS affected nodulation at a species level within the Lotus genus either positively (L. corniculatus subsp. frondosus and L. filicaulis) or negatively (L. halophilus and two other species). By inoculating L. halophilus with mutants of various type III effector candidate genes, we identified open reading frame mlr6361 as a major determinant of the nodulation restriction observed for L. halophilus. The predicted gene product of mlr6361 is a protein of 3,056 amino acids containing 15 repetitions of a sequence motif of 40 to 45 residues and a shikimate kinase-like domain at its carboxyl terminus. Homologues with similar repeat sequences are present in the hypersensitive-response and pathogenicity regions of several plant pathogens, including strains of Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas species. These results suggest that L. halophilus recognizes Mlr6361 as potentially pathogen derived and subsequently halts the infection process.


Plant and Soil | 2003

Super roots in Lotus corniculatus: A unique tissue culture and regeneration system in a legume species

Ryo Akashi; Tomoe Kawano; Masatsugu Hashiguchi; Yasuyo Kutsuna; Shyun-Shyun Hoffmann-Tsay; Franz Hoffmann

Super roots (SR) of Lotus corniculatus are a fast growing legume root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique to root cultures and are now stably expressed since the culture was isolated more than 5 years ago. Super roots switch from exclusive root proliferation to shoot production upon transfer to illuminated and stationary conditions. Lateral root formation continues at a reduced rate while embryos and shoots are forming. When infected with Rhizobium loti, SR carrying somatic embryos and small shoots, form root nodules. Regenerating SR provide evidence that root-derived somatic embryos and shoots of L. corniculatus begin to form in a process related to the development of lateral roots or root nodules. When treated with a low concentration of benzylamino purine (BAP), shoots form at an increased rate, matching the spacing typical for lateral roots. The super-growing root culture of L. corniculatus regenerates plants that show no morphological differences as compared to regenerants from wild-type roots or seedlings. Roots dissected from plantlets derived from SR or from super root-derived protoplasts express all super root qualities again when cultured in vitro. Super roots provide a favorable experimental system for developmental studies that are sensitive to exogenous hormones, such as lateral root formation or nodulation in vitro.


DNA Research | 2016

Sequencing and comparative analyses of the genomes of zoysiagrasses

Hidenori Tanaka; Hideki Hirakawa; Shunichi Kosugi; Shinobu Nakayama; Akiko Ono; Akiko Watanabe; Masatsugu Hashiguchi; Takahiro Gondo; Genki Ishigaki; Melody Muguerza; Katsuya Shimizu; Noriko Sawamura; Takayasu Inoue; Yuichi Shigeki; Naoki Ohno; Satoshi Tabata; Ryo Akashi; Shusei Sato

Zoysia is a warm-season turfgrass, which comprises 11 allotetraploid species (2n = 4x = 40), each possessing different morphological and physiological traits. To characterize the genetic systems of Zoysia plants and to analyse their structural and functional differences in individual species and accessions, we sequenced the genomes of Zoysia species using HiSeq and MiSeq platforms. As a reference sequence of Zoysia species, we generated a high-quality draft sequence of the genome of Z. japonica accession ‘Nagirizaki’ (334 Mb) in which 59,271 protein-coding genes were predicted. In parallel, draft genome sequences of Z. matrella ‘Wakaba’ and Z. pacifica ‘Zanpa’ were also generated for comparative analyses. To investigate the genetic diversity among the Zoysia species, genome sequence reads of three additional accessions, Z. japonica ‘Kyoto’, Z. japonica ‘Miyagi’ and Z. matrella ‘Chiba Fair Green’, were accumulated, and aligned against the reference genome of ‘Nagirizaki’ along with those from ‘Wakaba’ and ‘Zanpa’. As a result, we detected 7,424,163 single-nucleotide polymorphisms and 852,488 short indels among these species. The information obtained in this study will be valuable for basic studies on zoysiagrass evolution and genetics as well as for the breeding of zoysiagrasses, and is made available in the ‘Zoysia Genome Database’ at http://zoysia.kazusa.or.jp.


Plant and Cell Physiology | 2015

Red/far red light controls arbuscular mycorrhizal colonization via jasmonic acid and strigolactone signaling

Maki Nagata; Naoya Yamamoto; Tamaki Shigeyama; Yohei Terasawa; Toyoaki Anai; Tatsuya Sakai; Sayaka Inada; Susumu Arima; Masatsugu Hashiguchi; Ryo Akashi; Hideyuki Nakayama; Daisuke Ueno; Ann M. Hirsch; Akihiro Suzuki

Establishment of a nitrogen-fixing symbiosis between legumes and rhizobia not only requires sufficient photosynthate, but also the sensing of the ratio of red to far red (R/FR) light. Here, we show that R/FR light sensing also positively influences the arbuscular mycorrhizal (AM) symbiosis of a legume and a non-legume through jasmonic acid (JA) and strigolactone (SL) signaling. The level of AM colonization in high R/FR light-grown tomato and Lotus japonicus significantly increased compared with that determined for low R/FR light-grown plants. Transcripts for JA-related genes were also elevated under high R/FR conditions. The root exudates derived from high R/FR light-grown plants contained more (+)-5-deoxystrigol, an AM-fungal hyphal branching inducer, than those from low R/FR light-grown plants. In summary, high R/FR light changes not only the levels of JA and SL synthesis, but also the composition of plant root exudates released into the rhizosphere, in this way augmenting the AM symbiosis.


Journal of Plant Physiology | 2008

Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation

Hidenori Tanaka; Jun Toyama; Masatsugu Hashiguchi; Yasuyo Kutsuna; Shin-ichi Tsuruta; Ryo Akashi; Franz Hoffmann

Super-growing roots (superroots; SR), which have been established in the legume species Lotus corniculatus, are a fast-growing root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique for non-hairy root cultures, and they are now stably expressed since the culture was isolated more than 10 years ago (1997). Attempts to achieve direct and stable transformation of SR turned out to be unsuccessful. Making use of the supple regeneration plasticity of SR, we are reporting here an indirect transformation protocol. Leaf explants, derived from plants regenerated from SR, were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pBI121, which contains the neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes as selectable and visual markers, respectively. After co-cultivation, the explants were selected on solidified MS medium with 0.5 mg/L benzylamino purine (BAP), 100 mg/L kanamycin and 250 mg/L cefotaxime. Kanamycin-resistant calli were transferred to liquid rooting medium. The newly regenerated, kanamycin-resistant roots were harvested and SR cultures re-established, which exhibited all the characteristics of the original SR. Furthermore, kanamycin-resistant roots cultured onto solidified MS medium supplemented with 0.5 mg/L BAP produced plants at the same rate as control SR. Six months after gene transfer, PCR analysis and histochemical locating indicated that the NPTII gene was integrated into the genome and that the GUS gene was regularly expressed in leaves, roots and nodules, respectively. The protocol makes it now possible to produce transformed SR and nodules as well as transgenic plants from transformed SR.


Plant Signaling & Behavior | 2010

Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus

Akiyoshi Tominaga; Maki Nagata; Koichi Futsuki; Hidetoshi Abe; Toshiki Uchiumi; Mikiko Abe; Masatsugu Hashiguchi; Ryo Akashi; Ann M. Hirsch; Susumu Arima; Akihiro Suzuki

The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 μM ABA, we obtained mutants that not only showed increased root nodule number, but also enhanced nitrogen fixation. The mutant was designated enf1 (enhanced nitrogen fixation 1) and was confirmed to be monogenic and incompletely dominant. In long-term growth experiments with M. loti, although some yield parameters were the same for both enf1 and wild-type plants, both the dry weight and N content of 100 seeds and entire enf1 plants were significantly larger compared than those traits in wild-type seeds and plants. The augmentation of the weight and N content of the enf1 plants most likely reflects the increased N supplied by the additional enf1 nodules and the concomitant increase in N fixation activity. We determined that the endogenous ABA concentration and the sensitivity to ABA of enf1 were lower than that of wild-type seedlings. When wild-type plants were treated with abamine, a specific inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), which results in reduced ABA content, the N fixation activity of abamine-treated plants was elevated to the same levels as enf1. We also determined that production of nitric oxide (NO) in enf1 nodules was decreased. We conclude that endogenous ABA concentration not only regulates nodulation, but also nitrogen fixation activity by decreasing NO production in nodules.


Journal of Plant Physiology | 2011

FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits.

Yasuyo Himuro; Hidenori Tanaka; Masatsugu Hashiguchi; Takanari Ichikawa; Miki Nakazawa; Motoaki Seki; Miki Fujita; Kazuo Shinozaki; Minami Matsui; Ryo Akashi; Franz Hoffmann

Using the full-length cDNA overexpressor (FOX) gene-hunting system, we have generated 130 Arabidopsis FOX-superroot lines in birds-foot trefoil (Lotus corniculatus) for the systematic functional analysis of genes expressed in roots and for the selection of induced mutants with interesting root growth characteristics. We used the Arabidopsis-FOX Agrobacterium library (constructed by ligating pBIG2113SF) for the Agrobacterium-mediated transformation of superroots (SR) and the subsequent selection of gain-of-function mutants with ectopically expressed Arabidopsis genes. The original superroot culture of L. corniculatus is a unique host system displaying fast root growth in vitro, allowing continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely hormone-free culture conditions. Several of the Arabidopsis FOX-superroot lines show interesting deviations from normal growth and morphology of roots from SR-plants, such as differences in pigmentation, growth rate, length or diameter. Some of these mutations are of potential agricultural interest. Genomic PCR analysis revealed that 100 (76.9%) out of the 130 transgenic lines showed the amplification of single fragments. Sequence analysis of the PCR fragments from these 100 lines identified full-length cDNA in 74 of them. Forty-three out of 74 full-length cDNA carried known genes. The Arabidopsis FOX-superroot lines of L. corniculatus, produced in this study, expand the FOX hunting system and provide a new tool for the genetic analysis and control of root growth in a leguminous forage plant.


Breeding Science | 2012

The National BioResource Project (NBRP) Lotus and Glycine in Japan

Masatsugu Hashiguchi; Jun Abe; Toshio Aoki; Toyoaki Anai; Akihiro Suzuki; Ryo Akashi

The objective of the National BioResource Project (NBRP) in Japan is to collect, conserve and distribute biological materials for life sciences research. The project consists of twenty-eight bioresources, including animal, plant, microorganism and DNA resources. NBRP Lotus and Glycine aims to support the development of legume research through the collection, conservation, and distribution of these bioresources. Lotus japonicus is a perennial legume that grows naturally throughout Japan and is widely used as a model plant for legumes because of such advantages as its small genome size and short life cycle. Soybean (Glycine max) has been cultivated as an important crop since ancient times, and numerous research programs have generated a large amount of basic research information and valuable bioresources for this crop. We have also developed a “LegumeBase” a specialized database for the genera Lotus and Glycine, and are maintaining this database as a part of the NBRP. In this paper we will provide an overview of the resources available from the NBRP Lotus and Glycine database site, called “LegumeBase”.

Collaboration


Dive into the Masatsugu Hashiguchi's collaboration.

Top Co-Authors

Avatar

Ryo Akashi

University of Miyazaki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Hirsch

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge