Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masatsugu Miyara is active.

Publication


Featured researches published by Masatsugu Miyara.


Toxicology and Applied Pharmacology | 2013

Tributyltin-induced endoplasmic reticulum stress and its Ca2 +-mediated mechanism

Midori Isomura; Yaichiro Kotake; Kyoichi Masuda; Masatsugu Miyara; Katsuhiro Okuda; Shigeyoshi Samizo; Seigo Sanoh; Toru Hosoi; Koichiro Ozawa; Shigeru Ohta

Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress.


Journal of Neurochemistry | 2014

Endogenous neurotoxic dopamine derivative covalently binds to Parkinson's disease‐associated ubiquitin C‐terminal hydrolase L1 and alters its structure and function

Viorica Raluca Contu; Yaichiro Kotake; Takashi Toyama; Katsuhiro Okuda; Masatsugu Miyara; Shuichiro Sakamoto; Shigeyoshi Samizo; Seigo Sanoh; Yoshito Kumagai; Shigeru Ohta

Parkinsons disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C‐terminal hydrolase L1 (UCH‐L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1‐(3′,4′‐dihydroxybenzyl)‐1,2,3,4‐tetrahydroisoquinoline (3′,4′DHBnTIQ) is an endogenous parkinsonism‐inducing dopamine derivative. Here, we investigated the interaction between 3′,4′DHBnTIQ and UCH‐L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3′,4′DHBnTIQ binds to UCH‐L1 specifically at Cys152 in vitro. In addition, 3′,4′DHBnTIQ treatment increased the amount of UCH‐L1 in the insoluble fraction of SH‐SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH‐SY5Y cells. Catechol‐modified UCH‐L1 as well as insoluble UCH‐L1 were detected in the midbrain of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated PD model mice. Structurally as well as functionally altered UCH‐L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH‐L1 by neurotoxic endogenous compounds such as 3′,4′DHBnTIQ might play a key role in onset and progression of idiopathic PD.


Journal of Toxicological Sciences | 2016

Methoxychlor and fenvalerate induce neuronal death by reducing GluR2 expression

Kanae Umeda; Yaichiro Kotake; Masatsugu Miyara; Keishi Ishida; Seigo Sanoh; Shigeru Ohta

GluR2, an α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit, plays important roles in neuronal survival. We previously showed that exposure of cultured rat cortical neurons to several chemicals decreases GluR2 protein expression, leading to neuronal toxicity. Methoxychlor, the bis-p-methoxy derivative of dichlorodiphenyltrichloroethane, and fenvalerate, a synthetic pyrethroid chemical, have been used commercially as agricultural pesticides in several countries. In this study, we investigated the effects of long-term methoxychlor and fenvalerate exposure on neuronal glutamate receptors. Treatment of cultured rat cortical neurons with 1 or 10 µM methoxychlor and fenvalerate for 9 days selectively decreased GluR2 protein expression; the expression of other AMPA receptor subunits GluR1, GluR3, and GluR4 did not change under the same conditions. Importantly, the decreases in GluR2 protein expression were also observed on the cell surface membrane where AMPA receptors typically function. In addition, both chemicals decreased neuronal viability, which was blocked by pretreatment with 1-naphtylacetylspermine, an antagonist of GluR2-lacking AMPA receptors, and MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. These results suggest that long-term exposure to methoxychlor and fenvalerate decreases GluR2 protein expression, leading to neuronal death via overactivation of GluR2-lacking AMPA and NMDA receptors.


Journal of Neurochemistry | 2016

Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

Masatsugu Miyara; Yaichiro Kotake; Wataru Tokunaga; Seigo Sanoh; Shigeru Ohta

Parkinsons disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD‐related neurotoxin MPP+ suggest autophagy involvement in the pathogenesis of PD, the effect of MPP+ on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP+ exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP+ toxicity (2.5 and 5 mM for 24 h). In SH‐SY5Y cells, mild MPP+ exposure predominantly inhibited autophagosome degradation, whereas acute MPP+ exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP+ exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP+ exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP+ exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP+ exposure and mechanistic differences between mild and acute MPP+ toxicities. Mild MPP+ toxicity impaired autophagosome degradation through novel lysosomal acidity‐independent mechanisms. Sustained mild lysosomal damage may contribute to PD.


Bioscience, Biotechnology, and Biochemistry | 2016

Protein extracts from cultured cells contain nonspecific serum albumin

Masatsugu Miyara; Kanae Umeda; Keishi Ishida; Seigo Sanoh; Yaichiro Kotake; Shigeru Ohta

Serum is an important component of cell culture media. The present study demonstrates contamination of intracellular protein extract by bovine serum albumin from the culture media and illustrates how this contamination can cause the misinterpretation of western blot results. Preliminary experiments can prevent the misinterpretation of some experimental results, and optimization of the washing process may enable specific protein detection.


International Journal of Molecular Sciences | 2017

Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

Keishi Ishida; Kaori Aoki; Tomoko Takishita; Masatsugu Miyara; Shuichiro Sakamoto; Seigo Sanoh; Tomoki Kimura; Yasunari Kanda; Shigeru Ohta; Yaichiro Kotake

Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.


Biological & Pharmaceutical Bulletin | 2017

Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain

Keishi Ishida; Takashi Saiki; Kanae Umeda; Masatsugu Miyara; Seigo Sanoh; Shigeru Ohta; Yaichiro Kotake

Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.


Scientific Reports | 2017

Mild MPP + exposure-induced glucose starvation enhances autophagosome synthesis and impairs its degradation

Shuichiro Sakamoto; Masatsugu Miyara; Seigo Sanoh; Shigeru Ohta; Yaichiro Kotake

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, mainly characterised by the progressive loss of dopaminergic neurons. MPP+ has been widely used as a PD-related neurotoxin, and their reports suggested the several hypotheses for neuronal cell death. However, most of these hypotheses come from the studies about the acute MPP+ exposure. We previously revealed that mild MPP+ exposure (10 and 200 μM), which induces gradual cell death, impairs autophagosome degradation at 48 h. In the present study, we further investigated the specific events of mild MPP+ exposure and revealed that mild MPP+ exposure causes the cell death through glucose starvation, but not acute toxic model (2.5 and 5 mM). At 36 h after mild MPP+ exposure, autophagosome synthesis was enhanced owing to glucose starvation and continued to enhance until 48 h, despite impaired autophagosome degradation. Inhibition of autophagosome synthesis reduced mild MPP+-induced cell death. In conclusion, we clarified that glucose starvation-enhanced autophagosome synthesis occurs at an earlier stage than impaired autophagosome degradation and is important in mild MPP+ toxicity.


Journal of Toxicological Sciences | 2013

Involvement of decreased glutamate receptor subunit GluR2 expression in lead-induced neuronal cell death.

Keishi Ishida; Yaichiro Kotake; Masatsugu Miyara; Kaori Aoki; Seigo Sanoh; Yasunari Kanda; Shigeru Ohta


Archives of Toxicology | 2018

Carbofuran causes neuronal vulnerability to glutamate by decreasing GluA2 protein levels in rat primary cortical neurons

Kanae Umeda; Masatsugu Miyara; Keishi Ishida; Seigo Sanoh; Shigeru Ohta; Yaichiro Kotake

Collaboration


Dive into the Masatsugu Miyara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuhiro Okuda

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge