Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayo Koide is active.

Publication


Featured researches published by Masayo Koide.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels

Masayo Koide; Adrian D. Bonev; Mark T. Nelson; George C. Wellman

The cellular events that cause ischemic neurological damage following aneurysmal subarachnoid hemorrhage (SAH) have remained elusive. We report that subarachnoid blood profoundly impacts communication within the neurovascular unit—neurons, astrocytes, and arterioles—causing inversion of neurovascular coupling. Elevation of astrocytic endfoot Ca2+ to ∼400 nM by neuronal stimulation or to ∼300 nM by Ca2+ uncaging dilated parenchymal arterioles in control brain slices but caused vasoconstriction in post-SAH brain slices. Inhibition of K+ efflux via astrocytic endfoot large-conductance Ca2+-activated K+ (BK) channels prevented both neurally evoked vasodilation (control) and vasoconstriction (SAH). Consistent with the dual vasodilator/vasoconstrictor action of extracellular K+ ([K+]o), [K+]o <10 mM dilated and [K+]o >20 mM constricted isolated brain cortex parenchymal arterioles with or without SAH. Notably, elevation of external K+ to 10 mM caused vasodilation in brain slices from control animals but caused a modest constriction in brain slices from SAH model rats; this latter effect was reversed by BK channel inhibition, which restored K+-induced dilations. Importantly, the amplitude of spontaneous astrocytic Ca2+ oscillations was increased after SAH, with peak Ca2+ reaching ∼490 nM. Our data support a model in which SAH increases the amplitude of spontaneous astrocytic Ca2+ oscillations sufficiently to activate endfoot BK channels and elevate [K+]o in the restricted perivascular space. Abnormally elevated basal [K+]o combined with further K+ efflux stimulated by neuronal activity elevates [K+]o above the dilation/constriction threshold, switching the polarity of arteriolar responses to vasoconstriction. Inversion of neurovascular coupling may contribute to the decreased cerebral blood flow and development of neurological deficits that commonly follow SAH.


Translational Stroke Research | 2011

Subarachnoid Hemorrhage Induces Gliosis and Increased Expression of the Pro-inflammatory Cytokine High Mobility Group Box 1 Protein

Kentaro Murakami; Masayo Koide; Travis M. Dumont; Sheila R. Russell; George C. Wellman

Subarachnoid hemorrhage (SAH) following cerebral aneurysm rupture is associated with high rates of morbidity and mortality. Surviving SAH patients often suffer from neurological impairment, yet little is currently known regarding the influence of subarachnoid blood on brain parenchyma. The objective of the present study was to examine the impact of subarachnoid blood on glial cells using a rabbit SAH model. The astrocyte-specific proteins, glial fibrillary acidic protein (GFAP) and S100B, were up-regulated in brainstem from SAH model rabbits, consistent with the development of reactive astrogliosis. In addition to reactive astrogliosis, cytosolic expression of the pro-inflammatory cytokine, high-mobility group boxxa01 protein (HMGB1) was increased in brain from SAH animals. We found that greater than 90% of cells expressing cytosolic HMGB1 immunostained positively for Iba1, a specific marker for microglia and macrophages. Further, the number of Iba1-positive cells was similar in brain from control and SAH animals, suggesting the majority of these cells were likely resident microglial cells rather than infiltrating macrophages. These observations demonstrate SAH impacts brain parenchyma by activating astrocytes and microglia, triggering up-regulation of the pro-inflammatory cytokine HMGB1.


Nature Neuroscience | 2017

Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow

Thomas A. Longden; Fabrice Dabertrand; Masayo Koide; Albert L. Gonzales; Nathan R. Tykocki; Joseph E. Brayden; David C. Hill-Eubanks; Mark T. Nelson

Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular K+ —a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K+ (KIR2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K+ into rapid, inside-out electrical signaling to direct blood flow to active brain regions.


Journal of Molecular Neuroscience | 2012

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Potently Dilates Middle Meningeal Arteries: Implications for Migraine

Arsalan U. Syed; Masayo Koide; Karen M. Braas; Victor May; George C. Wellman

Migraine is a debilitating neurological disorder characterized by mild to severe headache that is often accompanied by aura and other neurological symptoms. Among proposed mechanisms, dilation of the dural vasculature especially the middle meningeal artery (MMA) has been implicated as one component underlying this disorder. Several regulatory peptides from trigeminal sensory and sphenopalatine postganglionic parasympathetic fibers innervating these vessels have been implicated in the process including pituitary adenylate cyclase-activating polypeptide (PACAP). Although PACAP has been well described as a potent dilator in many vascular beds, the effects of PACAP on the dural vasculature are unclear. In the current study, we examined the ability of PACAP to dilate MMAs that were isolated from rats and pressurized ex vivo. PACAP38 potently dilated pressurized MMAs with an EC50 of 1xa0pM. The PAC1 receptor antagonist, PACAP(6-38), abolished MMA dilation caused by picomolar concentrations of PACAP. In contrast, cerebellar arteries isolated from the brain surface were ~1,000-fold less sensitive to PACAP than MMAs. Although cerebellar arteries expressed transcripts for all three PACAP receptor subtypes (PAC1, VPAC1, and VPAC2 receptors) by RT-PCR analyses, MMA demonstrated only PAC1 and VPAC2 receptor expression. Further, multiple variants of the PAC1 receptor were identified in the MMA. The expression of PAC1 receptors and the high potency of PACAP to induce MMA vasodilation are consistent with their potential roles in the etiology of migraine.


Journal of Cerebral Blood Flow and Metabolism | 2011

Reduced Ca2+ Spark Activity after Subarachnoid Hemorrhage Disables BK Channel Control of Cerebral Artery Tone

Masayo Koide; Matthew A. Nystoriak; Gayathri Krishnamoorthy; Kevin P. O'Connor; Adrian D. Bonev; Mark T. Nelson; George C. Wellman

Intracellular Ca2+ release events (‘Ca2+ sparks’) and transient activation of large-conductance Ca2+-activated potassium (BK) channels represent an important vasodilator pathway in the cerebral vasculature. Considering the frequent occurrence of cerebral artery constriction after subarachnoid hemorrhage (SAH), our objective was to determine whether Ca2+ spark and BK channel activity were reduced in cerebral artery myocytes from SAH model rabbits. Using laser scanning confocal microscopy, we observed ∼50% reduction in Ca2+ spark activity, reflecting a decrease in the number of functional Ca2+ spark discharge sites. Patch-clamp electrophysiology showed a similar reduction in Ca2+ spark-induced transient BK currents, without change in BK channel density or single-channel properties. Consistent with a reduction in active Ca2+ spark sites, quantitative real-time PCR and western blotting revealed decreased expression of ryanodine receptor type 2 (RyR-2) and increased expression of the RyR-2-stabilizing protein, FKBP12.6, in the cerebral arteries from SAH animals. Furthermore, inhibitors of Ca2+ sparks (ryanodine) or BK channels (paxilline) constricted arteries from control, but not from SAH animals. This study shows that SAH-induced decreased subcellular Ca2+ signaling events disable BK channel activity, leading to cerebral artery constriction. This phenomenon may contribute to decreased cerebral blood flow and poor outcome after aneurysmal SAH.


Stroke Research and Treatment | 2013

Subarachnoid Hemorrhage, Spreading Depolarizations and Impaired Neurovascular Coupling

Masayo Koide; Inna Sukhotinsky; Cenk Ayata; George C. Wellman

Aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences on brain function including profound effects on communication between neurons and the vasculature leading to cerebral ischemia. Physiologically, neurovascular coupling represents a focal increase in cerebral blood flow to meet increased metabolic demand of neurons within active regions of the brain. Neurovascular coupling is an ongoing process involving coordinated activity of the neurovascular unit—neurons, astrocytes, and parenchymal arterioles. Neuronal activity can also influence cerebral blood flow on a larger scale. Spreading depolarizations (SD) are self-propagating waves of neuronal depolarization and are observed during migraine, traumatic brain injury, and stroke. Typically, SD is associated with increased cerebral blood flow. Emerging evidence indicates that SAH causes inversion of neurovascular communication on both the local and global level. In contrast to other events causing SD, SAH-induced SD decreases rather than increases cerebral blood flow. Further, at the level of the neurovascular unit, SAH causes an inversion of neurovascular coupling from vasodilation to vasoconstriction. Global ischemia can also adversely affect the neurovascular response. Here, we summarize current knowledge regarding the impact of SAH and global ischemia on neurovascular communication. A mechanistic understanding of these events should provide novel strategies to treat these neurovascular disorders.


Acta neurochirurgica | 2011

Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes

Masayo Koide; Matthew A. Nystoriak; Joseph E. Brayden; George C. Wellman

BACKGROUNDnCa2+ signaling mechanisms are crucial for proper regulation of vascular smooth muscle contractility and vessel diameter. In cerebral artery myocytes, a rise in global cytosolic Ca2+ concentration ([Ca2+]i) causes contraction while an increase in local Ca2+ release events from the sarcoplasmic reticulum (Ca2+ sparks) leads to increased activity of large-conductance Ca2+-activated (BK) K+ channels, hyperpolarization and relaxation. Here, we examined the impact of SAH on Ca2+ spark activity and [Ca2+]i in cerebral artery myocytes following SAH.nnnMETHODSnA rabbit double injection SAH model was used in this study. Five days after the initial intracisternal injection of whole blood, small diameter cerebral arteries were dissected from the brain for study. For simultaneous measurement of arterial wall [Ca2+]i and diameter, vessels were cannulated and loaded with the ratiometric Ca2+ indicator fura-2. For measurement of Ca2+ sparks, individual myocytes were enzymatically isolated from cerebral arteries and loaded with the Ca2+ indicator fluo-4. Sparks were visualized using laser scanning confocal microscopy.nnnRESULTSnArterial wall [Ca2+]i was significantly elevated and greater levels of myogenic tone developed in arteries isolated from SAH animals compared with arteries isolated from healthy animals. The L-type voltage-dependent Ca2+ channel (VDCC) blocker nifedipine attenuated increases in [Ca2+]i and tone in both groups suggesting increased VDCC activity following SAH. Membrane potential measurement using intracellular microelectrodes revealed significant depolarization of vascular smooth muscle following SAH. Further, myocytes from SAH animals exhibited significantly reduced Ca2+ spark frequency (~50%).nnnCONCLUSIONSnOur findings suggest decreased Ca2+ spark frequency leads to reduced BK channel activity in cerebral artery myocytes following SAH. This results in membrane potential depolarization, increased VDCC activity, elevated [Ca2+]i and decreased vessel diameter. We propose this mechanism of enhanced cerebral artery myocyte contractility may contribute to decreased cerebral blood flow and development of neurological deficits in SAH patients.


Journal of Molecular Neuroscience | 2014

Pituitary adenylate cyclase activating polypeptide (PACAP) dilates cerebellar arteries through activation of large-conductance Ca(2+)-activated (BK) and ATP-sensitive (K ATP) K (+) channels.

Masayo Koide; Arsalan U. Syed; Karen M. Braas; Victor May; George C. Wellman

Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent vasodilator of numerous vascular beds, including cerebral arteries. Although PACAP-induced cerebral artery dilation is suggested to be cyclic AMP (cAMP)-dependent, the downstream intracellular signaling pathways are still not fully understood. In this study, we examined the role of smooth muscle K+ channels and hypothesized that PACAP-mediated increases in cAMP levels and protein kinase A (PKA) activity result in the coordinate activation of ATP-sensitive K+ (KATP) and large-conductance Ca2+-activated K+ (BK) channels for cerebral artery dilation. Using patch-clamp electrophysiology, we observed that PACAP enhanced whole-cell KATP channel activity and transient BK channel currents in freshly isolated rat cerebellar artery myocytes. The increased frequency of transient BK currents following PACAP treatment is indicative of increased intracellular Ca2+ release events termed Ca2+ sparks. Consistent with the electrophysiology data, the PACAP-induced vasodilations of cannulated cerebellar artery preparations were attenuated by approximately 50xa0% in the presence of glibenclamide (a KATP channel blocker) or paxilline (a BK channel blocker). Further, in the presence of both blockers, PACAP failed to cause vasodilation. In conclusion, our results indicate that PACAP causes cerebellar artery dilation through two mechanisms: (1) KATP channel activation and (2) enhanced BK channel activity, likely through increased Ca2+ spark frequency.


Acta neurochirurgica | 2013

Subarachnoid blood converts neurally evoked vasodilation to vasoconstriction in rat brain cortex

Masayo Koide; Adrian D. Bonev; Mark T. Nelson; George C. Wellman

The matching of blood flow to regional brain function, called functional hyperemia or neurovascular coupling, involves the coordinated activity of neurons, astrocytes, and parenchymal arterioles. Under physiological conditions, localized neuronal activation leads to elevated astrocyte endfoot Ca(2+) and vasodilation, resulting in an increase in cerebral blood flow. In this study, we examined the impact of subarachnoid hemorrhage (SAH) on neurovascular coupling. SAH model rats received two injections of autologous blood into the cisterna magna 24 h apart. Cortical brain slices from SAH model animals were prepared 4 days after the initial blood injection. Arteriolar diameter and astrocyte endfoot Ca(2+) were simultaneously measured using two-photon microscopy. As expected, neuronal activity evoked by electrical field stimulation (EFS) caused an elevation in endfoot Ca(2+) and vasodilation in brain slices from control animals. However, in brain slices from SAH animals, EFS induced a similar increase in astrocyte endfoot Ca(2+) that caused arteriolar constriction rather than vasodilation. Vasoconstriction was observed in approximately 90% of brain slices from SAH animals in response to EFS, with 40% exhibiting a sustained vasoconstriction, 30% exhibiting a transient vasoconstriction -(diameter restored within 1 min after EFS), and 20% responded with a biphasic response (brief vasodilation followed by -vasoconstriction). This inversion of neurovascular coupling may play a role in the development of neurological deficits following SAH.


Journal of Cerebral Blood Flow and Metabolism | 2016

Purinergic signaling triggers endfoot high-amplitude Ca2+ signals and causes inversion of neurovascular coupling after subarachnoid hemorrhage

Anthony Pappas; Masayo Koide; George C. Wellman

Neurovascular coupling supports brain metabolism by matching focal increases in neuronal activity with local arteriolar dilation. Previously, we demonstrated that an emergence of spontaneous endfoot high-amplitude Ca2+ signals (eHACSs) caused a pathologic shift in neurovascular coupling from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage model animals. Extracellular purine nucleotides (e.g., ATP) can trigger astrocyte Ca2+ oscillations and may be elevated following subarachnoid hemorrhage. Here, the role of purinergic signaling in subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling was examined by imaging parenchymal arteriolar diameter and astrocyte Ca2+ signals in rat brain slices using two-photon fluorescent and infrared-differential interference contrast microscopy. We report that broad-spectrum inhibition of purinergic (P2) receptors using suramin blocked eHACSs and restored vasodilatory neurovascular coupling after subarachnoid hemorrhage. Importantly, eHACSs were also abolished using a cocktail of inhibitors targeting Gq-coupled P2Y receptors. Further, activation of P2Y receptors in brain slices from un-operated animals triggered high-amplitude Ca2+ events resembling eHACSs and disrupted neurovascular coupling. Neither tetrodotoxin nor bafilomycin A1 affected eHACSs suggesting that purine nucleotides are not released by ongoing neurotransmission and/or vesicular release after subarachnoid hemorrhage. These results indicate that purinergic signaling via P2Y receptors contributes to subarachnoid hemorrhage-induced eHACSs and inversion of neurovascular coupling.

Collaboration


Dive into the Masayo Koide's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge