Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayoshi Sakaguchi is active.

Publication


Featured researches published by Masayoshi Sakaguchi.


PLOS ONE | 2013

Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues

Misa Ohno; Yuto Togashi; Kyoko Tsuda; Kazuaki Okawa; Minori Kamaya; Masayoshi Sakaguchi; Yasusato Sugahara; Fumitaka Oyama

Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.


PLOS ONE | 2012

Chitinase mRNA Levels by Quantitative PCR Using the Single Standard DNA: Acidic Mammalian Chitinase Is a Major Transcript in the Mouse Stomach

Misa Ohno; Kyoko Tsuda; Masayoshi Sakaguchi; Yasusato Sugahara; Fumitaka Oyama

Chitinases hydrolyze the β-1-4 glycosidic bonds of chitin, a major structural component of fungi, crustaceans and insects. Although mammals do not produce chitin or its synthase, they express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). These mammalian chitinases have attracted considerable attention due to their increased expression in individuals with a number of pathological conditions, including Gaucher disease, Alzheimer’s disease and asthma. However, the contribution of these enzymes to the pathophysiology of these diseases remains to be determined. The quantification of the Chit1 and AMCase mRNA levels and the comparison of those levels with the levels of well-known reference genes can generate useful and biomedically relevant information. In the beginning, we established a quantitative real-time PCR system that uses standard DNA produced by ligating the cDNA fragments of the target genes. This system enabled us to quantify and compare the expression levels of the chitinases and the reference genes on the same scale. We found that AMCase mRNA is synthesized at extraordinarily high levels in the mouse stomach. The level of this mRNA in the mouse stomach was 7- to 10-fold higher than the levels of the housekeeping genes and was comparable to that the level of the mRNA for pepsinogen C (progastricsin), a major component of the gastric mucosa. Thus, AMCase mRNA is a major transcript in mouse stomach, suggesting that AMCase functions as a digestive enzyme that breaks down polymeric chitin and as part of the host defense against chitin-containing pathogens in the gastric contents. Our methodology is applicable to the quantification of mRNAs for multiple genes across multiple specimens using the same scale.


Scientific Reports | 2016

Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system

Misa Ohno; Masahiro Kimura; Haruko Miyazaki; Kazuaki Okawa; Riho Onuki; Chiyuki Nemoto; Eri Tabata; Satoshi Wakita; Akinori Kashimura; Masayoshi Sakaguchi; Yasusato Sugahara; Nobuyuki Nukina; Peter Bauer; Fumitaka Oyama

Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc)2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc)2, a source of carbon, nitrogen and energy.


Molecular Biology and Evolution | 2016

Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs

Kazuaki Okawa; Misa Ohno; Akinori Kashimura; Masahiro Kimura; Yuki Kobayashi; Masayoshi Sakaguchi; Yasusato Sugahara; Minori Kamaya; Yoshihiro Kino; Peter O. Bauer; Fumitaka Oyama

Acidic mammalian chitinase (AMCase) is implicated in asthma, allergic inflammation, and food processing. Little is known about genetic and evolutional regulation of chitinolytic activity of AMCase. Here, we relate human AMCase polymorphisms to the mouse AMCase, and show that the highly active variants encoded by nonsynonymous single-nucleotide polymorphisms (nsSNPs) are consistent with the mouse AMCase sequence. The chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. By creating mouse-human chimeric AMCase protein we found that the presence of the N-terminal region of human AMCase containing conserved active site residues reduced the enzymatic activity of the molecule. We were able to significantly increase the activity of human AMCase by amino acid substitutions encoded by nsSNPs (N45, D47, and R61) with those conserved in the mouse homologue (D45, N47, and M61). For abolition of the mouse AMCase activity, introduction of M61R mutation was sufficient. M61 is conserved in most of primates other than human and orangutan as well as in other mammals. Orangutan has I61 substitution, which also markedly reduced the activity of the mouse AMCase, indicating that the M61 is a crucial residue for the chitinolytic activity. Altogether, our data suggest that human AMCase has lost its chitinolytic activity by integration of nsSNPs during evolution and that the enzyme can be reactivated by introducing amino acids conserved in the mouse counterpart.


PLOS ONE | 2013

Protein A-mouse acidic mammalian chitinase-V5-His expressed in periplasmic space of Escherichia coli possesses chitinase functions comparable to CHO-expressed protein.

Akinori Kashimura; Kazuaki Okawa; Kotarou Ishikawa; Yuta Kida; Kokoro Iwabuchi; Yudai Matsushima; Masayoshi Sakaguchi; Yasusato Sugahara; Fumitaka Oyama

Acidic mammalian chitinase (AMCase) has been shown to be associated with asthma in mouse models, allergic inflammation and food processing. Here, we describe an E. coli-expression system that allows for the periplasmic production of active AMCase fused to Protein A at the N-terminus and V5 epitope and (His)6 tag (V5-His) at the C-terminus (Protein A-AMCase-V5-His) in E. coli. The mouse AMCase cDNA was cloned into the vector pEZZ18, which is an expression vector containing the Staphylococcus Protein A promoter, with the signal sequence and truncated form of Protein A for extracellular expression in E. coli. Most of the Protein A-AMCase-V5-His was present in the periplasmic space with chitinolytic activity, which was measured using a chromogenic substrate, 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside. The Protein A-AMCase-V5-His was purified from periplasmic fractions using an IgG Sepharose column followed by a Ni Sepharose chromatography. The recombinant protein showed a robust peak of activity with a maximum observed activity at pH 2.0, where an optimal temperature was 54°C. When this protein was preincubated between pH 1.0 and pH 11.0 on ice for 1 h, full chitinolytic activity was retained. This protein was also heat-stable till 54°C, both at pH 2.0 and 7.0. The chitinolytic activity of the recombinant AMCase against 4-nitrophenyl N,N′-diacetyl-β-D-chitobioside was comparable to the CHO-expressed AMCase. Furthermore, the recombinant AMCase bound to chitin beads, cleaved colloidal chitin and released mainly N,N′-diacetylchitobiose fragments. Thus, the E. coli-expressed Protein A-mouse AMCase-V5-His fusion protein possesses chitinase functions comparable to the CHO-expressed AMCase. This recombinant protein can be used to elucidate detailed biomedical functions of the mouse AMCase.


AMB Express | 2014

Glucoamylase of Caulobacter crescentus CB15: cloning and expression in Escherichia coli and functional identification

Masayoshi Sakaguchi; Yudai Matsushima; Toshiyuki Nankumo; Junichi Seino; Satoshi Miyakawa; Shotaro Honda; Yasusato Sugahara; Fumitaka Oyama; Masao Kawakita

The biochemical properties of the maltodextrin-hydrolyzing enzymes of cold-tolerant proteobacterium Caulobacter crescentus CB15 remain to be elucidated, although whose maltodextrin transport systems were well investigated. We cloned the putative glucoamylase of C. crescentus CB15 (CauloGA) gene. The CauloGA gene product that was expressed in E. coli was prone to forming inclusion bodies; however, most of the gene product was expressed in a soluble and active form when it was expressed as a fusion protein with Staphylococcus Protein A. The fusion protein was purified using an IgG Sepharose column and was identified as the active GA. The optimum temperature and pH for the activity of this GA toward maltotriose as a substrate were approximately 40°C and 5.0, respectively, and a differential scanning fluorimetry (DSF) analysis revealed that the melting temperature (Tm) of CauloGA was 42.9°C. The kinetic analyses with maltotriose and other maltodextrins as the substrates indicated that CauloGA has higher kcat and smaller Km values at 30°C with both substrates compared with other GAs at lower substrate concentration. However, the enzyme activities toward the substrates decreased as the substrate concentrations increased at concentrations higher than approximately 10-fold the Km. The function-based identification of thermolabile Caulobacter GA contributes to the understanding of the maltodextrin-degradation system of C. crescentus as well as the bacterial GA’s function-structure relationship.


Scientific Reports | 2017

Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry

Eri Tabata; Akinori Kashimura; Satoshi Wakita; Misa Ohno; Masayoshi Sakaguchi; Yasusato Sugahara; Yoshihiro Kino; Vaclav Matoska; Peter Bauer; Fumitaka Oyama

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in crustaceans, insects and fungi and is the second most abundant polysaccharide in the nature. Although these chitin-containing organisms have been suggested as novel animal feed resources, chitin has long been considered as indigestible fibers in the animal body. Recently, we reported that acidic chitinase (Chia) is a protease-resistant major glycosidase in mouse gastrointestinal tract (GIT) and that it digests chitin in the mouse stomach. However, the physiological role of Chia in other animals including poultry remains unknown. Here, we report that Chia can function as a digestive enzyme that breaks down chitin-containing organisms in chicken GIT. Chia mRNA is predominantly expressed in the glandular stomach tissue in normal chicken. We also show that chicken Chia has a robust chitinolytic activity at pH 2.0 and is highly resistant to proteolysis by pepsin and trypsin/chymotrypsin under conditions mimicking GIT. Chia degraded shells of mealworm larvae in the presence of digestive proteases and produced (GlcNAc)2. Thus, functional similarity of chicken Chia with the mouse enzyme suggests that chitin-containing organisms can be used for alternative poultry diets not only as whole edible resources but also as enhancers of their nutritional value.


Journal of Biochemistry | 2008

Role of Disulphide Bonds in a Thermophilic Serine Protease Aqualysin I from Thermus aquaticus YT-1

Masayoshi Sakaguchi; Makoto Takezawa; Rie Nakazawa; Kazutaka Nozawa; Taro Kusakawa; Takeshi Nagasawa; Yasusato Sugahara; Masao Kawakita

A thermophilic serine protease, Aqualysin I, from Thermus aquaticus YT-1 has two disulphide bonds, which are also found in a psychrophilic serine protease from Vibrio sp. PA-44 and a proteinase K-like enzyme from Serratia sp. at corresponding positions. To understand the significance of these disulphide bonds in aqualysin I, we prepared mutants C99S, C194S and C99S/C194S (WSS), in which Cys69-Cys99, Cys163-Cys194 and both of these disulphide bonds, respectively, were disrupted by replacing Cys residues with Ser residues. All mutants were expressed stably in Escherichia coli. The C99S mutant was 68% as active as the wild-type enzyme at 40 degrees C in terms of k(cat) value, while C194S and WSS were only 6 and 3%, respectively, as active, indicating that disulphide bond Cys163-Cys194 is critically important for maintaining proper catalytic site conformation. Mutants C194S and WSS were less thermostable than wild-type enzyme, with a half-life at 90 degrees C of 10 min as compared to 45 min of the latter and with transition temperatures on differential scanning calorimetry of 86.7 degrees C and 86.9 degrees C, respectively. Mutant C99S was almost as stable as the wild-type aqualysin I. These results indicate that the disulphide bond Cys163-Cys194 is more important for catalytic activity and conformational stability of aqualysin I than Cys67-Cys99.


Glycobiology | 2012

Amino acid residues important for CMP-sialic acid recognition by the CMP-sialic acid transporter: analysis of the substrate specificity of UDP-galactose/CMP-sialic acid transporter chimeras

Taro Takeshima-Futagami; Masayoshi Sakaguchi; Eriko Uehara; Kazuhisa Aoki; Nobuhiro Ishida; Yutaka Sanai; Yasusato Sugahara; Masao Kawakita

In our previous studies, we demonstrated that chimeric molecules of the CMP-sialic acid (CMP-Sia) transporter (CST) and the UDP-galactose (Gal) transporter (UGT) in which the seventh transmembrane helix-containing segment was derived from the CST could transport both CMP-Sia and UDP-Gal and that the CST-derived seventh transmembrane helix segment was sufficient for the chimera to recognize CMP-Sia in the otherwise UGT context. In this study, we continued to more precisely define the submolecular region that is necessary for CMP-Sia recognition, and we demonstrated that the N-terminal half of the seventh transmembrane helix of CST is essential for the CMP-Sia transport mediated by the chimeric transporters. We further showed that Tyr214Gly and Ser216Phe mutations of a chimeric transporter that was capable of transporting both CMP-Sia and UDP-Gal led to the selective loss of CMP-Sia transport activity without affecting UDP-Gal transport activity. Conversely, when a residue in a chimeric transporter that was active for UDP-Gal transport but not CMP-Sia transport was replaced by Tyr, so that Tyr occupied the same position as in the CMP-Sia transporter, the resulting mutant chimera acquired the ability to transport CMP-Sia. These results demonstrated that Tyr214 and Ser216, located in the seventh transmembrane helix of the human CST, are critically important for the recognition of CMP-Sia as a transport substrate. Identification of determinants critical for the discrimination between relevant and irrelevant substrates will advance our understanding of the mechanisms of substrate recognition by nucleotide sugar transporters.


Applied and Environmental Microbiology | 2015

Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range

Masayoshi Sakaguchi; Satoru Shimodaira; Shin-nosuke Ishida; Miko Amemiya; Shotaro Honda; Yasusato Sugahara; Fumitaka Oyama; Masao Kawakita

ABSTRACT Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki ) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism.

Collaboration


Dive into the Masayoshi Sakaguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bauer

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge