Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Hirano is active.

Publication


Featured researches published by Masayuki Hirano.


Nature Genetics | 2013

Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution.

Jeramiah J. Smith; Shigehiro Kuraku; Carson Holt; Tatjana Sauka-Spengler; Ning Jiang; Michael S. Campbell; Mark Yandell; Tereza Manousaki; Axel Meyer; Ona Bloom; Jennifer R. Morgan; Joseph D. Buxbaum; Ravi Sachidanandam; Carrie Sims; Alexander S. Garruss; Malcolm Cook; Robb Krumlauf; Leanne M. Wiedemann; Stacia A. Sower; Wayne A. Decatur; Jeffrey A. Hall; Chris T. Amemiya; Nil Ratan Saha; Katherine M. Buckley; Jonathan P. Rast; Sabyasachi Das; Masayuki Hirano; Nathanael McCurley; Peng Guo; Nicolas Rohner

Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.


Nature | 2009

Dual nature of the adaptive immune system in lampreys

Peng Guo; Masayuki Hirano; Brantley R. Herrin; Jianxu Li; Cuiling Yu; Andrea Sadlonova; Max D. Cooper

Jawless vertebrates use variable lymphocyte receptors (VLR) comprised of leucine-rich-repeat (LRR) segments as counterparts of the immunoglobulin-based receptors that jawed vertebrates use for antigen recognition. Highly diverse VLR genes are somatically assembled by the insertion of variable LRR sequences into incomplete germline VLRA and VLRB genes. Here we show that in sea lampreys (Petromyzon marinus) VLRA and VLRB anticipatory receptors are expressed by separate lymphocyte populations by monoallelic VLRA or VLRB assembly, together with expression of cytosine deaminase 1 (CDA1) or 2 (CDA2), respectively. Distinctive gene expression profiles for VLRA+ and VLRB+ lymphocytes resemble those of mammalian T and B cells. Although both the VLRA and the VLRB cells proliferate in response to antigenic stimulation, only the VLRB lymphocytes bind native antigens and differentiate into VLR antibody-secreting cells. Conversely, VLRA lymphocytes respond preferentially to a classical T-cell mitogen and upregulate the expression of the pro-inflammatory cytokine genes interleukin-17 (IL-17) and macrophage migration inhibitory factor (MIF). The finding of T-like and B-like lymphocytes in lampreys offers new insight into the evolution of adaptive immunity.


Nature | 2011

A thymus candidate in lampreys

Baubak Bajoghli; Peng Guo; Narges Aghaallaei; Masayuki Hirano; Christine Strohmeier; Nathanael McCurley; Dale E. Bockman; Michael Schorpp; Max D. Cooper; Thomas Boehm

Immunologists and evolutionary biologists have been debating the nature of the immune system of jawless vertebrates—lampreys and hagfish—since the nineteenth century. In the past 50 years, these fish were shown to have antibody-like responses and the capacity to reject allografts but were found to lack the immunoglobulin-based adaptive immune system of jawed vertebrates. Recent work has shown that lampreys have lymphocytes that instead express somatically diversified antigen receptors that contain leucine-rich-repeats, termed variable lymphocyte receptors (VLRs), and that the type of VLR expressed is specific to the lymphocyte lineage: T-like lymphocytes express type A VLR (VLRA) genes, and B-like lymphocytes express VLRB genes. These clonally diverse anticipatory antigen receptors are assembled from incomplete genomic fragments by gene conversion, which is thought to be initiated by either of two genes encoding cytosine deaminase, cytosine deaminase 1 (CDA1) in T-like cells and CDA2 in B-like cells. It is unknown whether jawless fish, like jawed vertebrates, have dedicated primary lymphoid organs, such as the thymus, where the development and selection of lymphocytes takes place. Here we identify discrete thymus-like lympho-epithelial structures, termed thymoids, in the tips of the gill filaments and the neighbouring secondary lamellae (both within the gill basket) of lamprey larvae. Only in the thymoids was expression of the orthologue of the gene encoding forkhead box N1 (FOXN1), a marker of the thymopoietic microenvironment in jawed vertebrates, accompanied by expression of CDA1 and VLRA. This expression pattern was unaffected by immunization of lampreys or by stimulation with a T-cell mitogen. Non-functional VLRA gene assemblies were found frequently in the thymoids but not elsewhere, further implicating the thymoid as the site of development of T-like cells in lampreys. These findings suggest that the similarities underlying the dual nature of the adaptive immune systems in the two sister groups of vertebrates extend to primary lymphoid organs.


Advances in Immunology | 2011

The evolution of adaptive immunity in vertebrates.

Masayuki Hirano; Sabyasachi Das; Peng Guo; Max D. Cooper

Approximately 500 million years ago, two types of recombinatorial adaptive immune systems (AISs) arose in vertebrates. The jawed vertebrates diversify their repertoire of immunoglobulin domain-based T and B cell antigen receptors mainly through the rearrangement of V(D)J gene segments and somatic hypermutation, but none of the fundamental AIS recognition elements in jawed vertebrates have been found in jawless vertebrates. Instead, the AIS of jawless vertebrates is based on variable lymphocyte receptors (VLRs) that are generated through recombinatorial usage of a large panel of highly diverse leucine-rich-repeat (LRR) sequences. Whereas the appearance of transposon-like, recombination-activating genes contributed uniquely to the origin of the AIS in jawed vertebrates, the use of activation-induced cytidine deaminase for receptor diversification is common to both the jawed and jawless vertebrates. Despite these differences in anticipatory receptor construction, the basic AIS design featuring two interactive T and B lymphocyte arms apparently evolved in an ancestor of jawed and jawless vertebrates within the context of preexisting innate immunity and has been maintained since as a consequence of powerful and enduring selection, most probably for pathogen defense purposes.


Nature | 2013

Evolutionary implications of a third lymphocyte lineage in lampreys

Masayuki Hirano; Peng Guo; Nathanael McCurley; Michael Schorpp; Sabyasachi Das; Thomas Boehm; Max D. Cooper

Jawed vertebrates (gnathostomes) and jawless vertebrates (cyclostomes) have different adaptive immune systems. Gnathostomes use T- and B-cell antigen receptors belonging to the immunoglobulin superfamily. Cyclostomes, the lampreys and hagfish, instead use leucine-rich repeat proteins to construct variable lymphocyte receptors (VLRs), two types of which, VLRA and VLRB, are reciprocally expressed by lymphocytes resembling gnathostome T and B cells. Here we define another lineage of T-cell-like lymphocytes that express the recently identified VLRC receptors. Both VLRC+ and VLRA+ lymphocytes express orthologues of genes that gnathostome γδ and αβ T cells use for their differentiation, undergo VLRC and VLRA assembly and repertoire diversification in the ‘thymoid’ gill region, and express their VLRs solely as cell-surface proteins. Our findings suggest that the genetic programmes for two primordial T-cell lineages and a prototypic B-cell lineage were already present in the last common vertebrate ancestor approximately 500 million years ago. We propose that functional specialization of distinct T-cell-like lineages was an ancient feature of a primordial immune system.


Biology Direct | 2012

AID/APOBEC cytosine deaminase induces genome-wide kataegis

Artem G. Lada; Alok Dhar; Robert Boissy; Masayuki Hirano; Aleksandr Anatol'evich Rubel'; Igor B. Rogozin; Youri I. Pavlov

Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm), are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events.ReviewersThis article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Definition of a third VLR gene in hagfish

Jianxu Li; Sabyasachi Das; Brantley R. Herrin; Masayuki Hirano; Max D. Cooper

Significance The jawless vertebrates (hagfish and lampreys) possess an alternative adaptive immune system in which variable lymphocyte receptors (VLRs) constructed of leucine-rich repeats are used to recognize foreign antigens. Three VLR genes have been identified in lampreys (VLRA, VLRB, and VLRC), but only two (VLRA and VLRB) have been found in hagfish. Here, we identified and characterized a third hagfish VLR gene. Our analysis indicates that the third hagfish VLR is the ortholog of lamprey VLRA, while the previously identified hagfish “VLRA” is the counterpart of lamprey VLRC. The demonstration of three orthologous VLR genes in hagfish and lampreys suggests that this anticipatory receptor system evolved in a common ancestor of the two jawless vertebrate lineages ∼480 Mya. Jawless vertebrates (cyclostomes) have an alternative adaptive immune system in which lymphocytes somatically diversify their variable lymphocyte receptors (VLR) through recombinatorial use of leucine-rich repeat cassettes during VLR gene assembly. Three types of these anticipatory receptors in lampreys (VLRA, VLRB, and VLRC) are expressed by separate lymphocyte lineages. However, only two VLR genes (VLRA and VLRB) have been found in hagfish. Here we have identified a third hagfish VLR, which undergoes somatic assembly to generate sufficient diversity to encode a large repertoire of anticipatory receptors. Sequence analysis, structural comparison, and phylogenetic analysis indicate that the unique hagfish VLR is the counterpart of lamprey VLRA and the previously identified hagfish “VLRA” is the lamprey VLRC counterpart. The demonstration of three orthologous VLR genes in both lampreys and hagfish suggests that this anticipatory receptor system evolved in a common ancestor of the two cyclostome lineages around 480 Mya.


PLOS Genetics | 2013

Genome-Wide Mutation Avalanches Induced in Diploid Yeast Cells by a Base Analog or an APOBEC Deaminase

Artem G. Lada; Elena I. Stepchenkova; Irina S.-R. Waisertreiger; Vladimir N. Noskov; Alok Dhar; James D. Eudy; Robert Boissy; Masayuki Hirano; Igor B. Rogozin; Youri I. Pavlov

Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Organization of lamprey variable lymphocyte receptor C locus and repertoire development.

Sabyasachi Das; Masayuki Hirano; Narges Aghaallaei; Baubak Bajoghli; Thomas Boehm; Max D. Cooper

Jawless vertebrates are pivotal representatives for studies of the evolution of adaptive immunity due to their unique position in chordate phylogeny. Lamprey and hagfish, the extant jawless vertebrates, have an alternative lymphocyte-based adaptive immune system that is based on somatically diversifying leucine-rich repeat (LRR)-based antigen receptors, termed variable lymphocyte receptors (VLRs). Lamprey T-like and B-like lymphocyte lineages have been shown to express VLRA and VLRB types of anticipatory receptors, respectively. An additional VLR type, termed VLRC, has recently been identified in arctic lamprey (Lethenteron camtschaticum), and our analysis indicates that VLRC sequences are well conserved in sea lamprey (Petromyzon marinus), L. camtschaticum, and European brook lamprey (Lampetra planeri). Genome sequences of P. marinus were analyzed to determine the organization of the VLRC-encoding locus. In addition to the incomplete germ-line VLRC gene, we have identified 182 flanking donor genomic sequences that could be used to complete the assembly of mature VLRC genes. Donor LRR cassettes were classifiable into five basic structural groups, the composition of which determines their order of use during VLRC assembly by virtue of sequence similarities to the incomplete germ-line gene and to one another. Bidirectional VLRC assembly was predicted by comparisons of mature VLRC genes with the sequences of donor LRR cassettes and verified by analysis of partially assembled intermediates. Biased and repetitive use of certain donor LRR cassettes was demonstrable in mature VLRCs. Our analysis provides insight into the unique molecular strategies used for VLRC gene assembly and repertoire diversification.


Molecular Biology and Evolution | 2010

Analysis of the Immunoglobulin Light Chain Genes in Zebra Finch: Evolutionary Implications

Sabyasachi Das; Uzra Mohamedy; Masayuki Hirano; Masatoshi Nei; Nikolas Nikolaidis

All jawed vertebrates produce immunoglobulins (IGs) as a defense mechanism against pathogens. Typically, IGs are composed of two identical heavy chains (IGH) and two identical light chains (IGL). Most tetrapod species encode more than one isotype of light chains. Chicken is the only representative of birds for which genomic information is currently available and is an exception to the above rule because it encodes only a single IGL isotype (i.e., lambda). Here, we show that the genome of zebra finch, another bird species, encodes a single IGL isotype, that is, lambda, like the chicken. These results strongly suggest that the second isotype (i.e., kappa) present in both reptiles and mammals was lost in a very early stage of bird evolution. Furthermore, we show that both chicken and zebra finch contain a single set of functional variable, joining, and constant region genes and multiple variable region pseudogenes. The latter finding suggests that this type of genomic organization was already present in the common ancestor of these bird species and remained unchanged over a long evolutionary time. This conservation is in contrast with the high levels of variation observed in the mammalian IGL loci. The presence of a single functional variable region gene followed by multiple variable pseudogenes in zebra finch suggest that this species may be generating antibody diversity by a gene conversion-like mechanism like the chicken.

Collaboration


Dive into the Masayuki Hirano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolas Nikolaidis

California State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge