Masayuki Hirata
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masayuki Hirata.
NeuroImage | 2000
Masaaki Taniguchi; Amami Kato; Norihiko Fujita; Masayuki Hirata; Hisashi Tanaka; Taizo Kihara; Hirotomo Ninomiya; Norio Hirabuki; Hironobu Nakamura; Stephen E. Robinson; Douglas Cheyne; Toshiki Yoshimine
Event-related desynchronization (ERD) within the alpha and beta bands on unilateral index finger extension and hand grasping was investigated on six normal volunteers with magnetoencephalography (MEG). A novel spatial filtering technique for imaging cortical source power, synthetic aperture magnetometry (SAM), was employed for the tomographic demonstration of ERD. SAM source image results were transformed into statistical parametric images. On the same hand grasping task, a functional MRI (fMRI) study was conducted on two subjects and compared with the ERD result. When the MEG data were analyzed with the fast Fourier transformation, power attenuation within the alpha and beta bands was evident on the contralateral sensorimotor area just prior to movement onset. The tomographic distribution of ERD was clearly obtained with SAM statistical imaging analysis. The equivalent current dipole (ECD) for the signal-averaged motor field was localized to the hemisphere contralateral to the hand movement, roughly at the center of the region displaying beta-band ERD. The signal increase on fMRI roughly colocalized with the ERD on the contralateral sensorimotor area. In conclusion, with the novel spatial filtering technique for the brain magnetic field, SAM, cortical regions contributing to ERD on finger movement were successfully demonstrated in a tomographic manner. The relative colocalization of the contralateral SAM ERD with ECD as well as the fMRI activation suggests that SAM is a practically useful technique to extract event-related signals from brain noise.
Pain | 2006
Azuma Hirayama; Youichi Saitoh; Haruhiko Kishima; Toshio Shimokawa; Satoru Oshino; Masayuki Hirata; Amami Kato; Toshiki Yoshimine
Abstract The precentral gyrus (M1) is a representative target for electrical stimulation therapy of pain. To date, few researchers have investigated whether pain relief is possible by stimulation of cortical areas other than M1. According to recent reports, repetitive transcranial magnetic stimulation (rTMS) can provide an effect similar to that of electrical stimulation. With this in mind, we therefore examined several cortical areas as stimulation targets using a navigation‐guided rTMS and compared the effects of the different targets on pain. Twenty patients with intractable deafferentation pain received rTMS of M1, the postcentral gyrus (S1), premotor area (preM), and supplementary motor area (SMA). Each target was stimulated with ten trains of 10‐s 5‐Hz TMS pulses, with 50‐s intervals in between trains. Intensities were adjusted to 90% of resting motor thresholds. Thus, a total of 500 stimuli were applied. Sham stimulations were undertaken at random. The effect of rTMS on pain was rated by patients using a visual analogue scale (VAS) and the short form of the McGill Pain Questionnaire (SF‐MPQ). Ten of the 20 patients (50%) indicated that stimulation of M1, but not other areas, provided significant and beneficial pain relief (p < 0.01). Results indicated a statistically significant effect lasting for 3 hours after the stimulation of M1 (p < 0.05). Stimulation of other targets was not effective. The M1 was the sole target for treating intractable pain with rTMS, in spite of the fact that M1, S1, preM, and SMA are located adjacently.
Annals of Neurology | 2012
Takufumi Yanagisawa; Masayuki Hirata; Youichi Saitoh; Haruhiko Kishima; Kojiro Matsushita; Tetsu Goto; Ryohei Fukuma; Hiroshi Yokoi; Yukiyasu Kamitani; Toshiki Yoshimine
Paralyzed patients may benefit from restoration of movement afforded by prosthetics controlled by electrocorticography (ECoG). Although ECoG shows promising results in human volunteers, it is unclear whether ECoG signals recorded from chronically paralyzed patients provide sufficient motor information, and if they do, whether they can be applied to control a prosthetic.
Journal of Neurosurgery | 2011
Takufumi Yanagisawa; Masayuki Hirata; Youichi Saitoh; Tetsu Goto; Haruhiko Kishima; Ryohei Fukuma; Hiroshi Yokoi; Yukiyasu Kamitani; Toshiki Yoshimine
OBJECT A brain-machine interface (BMI) offers patients with severe motor disabilities greater independence by controlling external devices such as prosthetic arms. Among the available signal sources for the BMI, electrocorticography (ECoG) provides a clinically feasible signal with long-term stability and low clinical risk. Although ECoG signals have been used to infer arm movements, no study has examined its use to control a prosthetic arm in real time. The authors present an integrated BMI system for the control of a prosthetic hand using ECoG signals in a patient who had suffered a stroke. This system used the power modulations of the ECoG signal that are characteristic during movements of the patients hand and enabled control of the prosthetic hand with movements that mimicked the patients hand movements. METHODS A poststroke patient with subdural electrodes placed over his sensorimotor cortex performed 3 types of simple hand movements following a sound cue (calibration period). Time-frequency analysis was performed with the ECoG signals to select 3 frequency bands (1-8, 25-40, and 80-150 Hz) that revealed characteristic power modulation during the movements. Using these selected features, 2 classifiers (decoders) were trained to predict the movement state--that is, whether the patient was moving his hand or not--and the movement type based on a linear support vector machine. The decoding accuracy was compared among the 3 frequency bands to identify the most informative features. With the trained decoders, novel ECoG signals were decoded online while the patient performed the same task without cues (free-run period). According to the results of the real-time decoding, the prosthetic hand mimicked the patients hand movements. RESULTS Offline cross-validation analysis of the ECoG data measured during the calibration period revealed that the state and movement type of the patients hand were predicted with an accuracy of 79.6% (chance 50%) and 68.3% (chance 33.3%), respectively. Using the trained decoders, the onset of the hand movement was detected within 0.37 ± 0.29 seconds of the actual movement. At the detected onset timing, the type of movement was inferred with an accuracy of 69.2%. In the free-run period, the patients hand movements were faithfully mimicked by the prosthetic hand in real time. CONCLUSIONS The present integrated BMI system successfully decoded the hand movements of a poststroke patient and controlled a prosthetic hand in real time. This success paves the way for the restoration of the patients motor function using a prosthetic arm controlled by a BMI using ECoG signals.
NeuroImage | 2004
Masayuki Hirata; Amami Kato; Masaaki Taniguchi; Youichi Saitoh; Hirotomo Ninomiya; Aya Ihara; Haruhiko Kishima; Satoru Oshino; Takahito Baba; Shiro Yorifuji; Toshiki Yoshimine
Cerebral dominance for language function was investigated with synthetic aperture magnetometry (SAM). The results were compared with those of the Wada test. SAM is a spatial filtering technique that enables demonstration of the spatiotemporal distribution of oscillatory changes (synchronization and desynchronization) in magnetoencephalography (MEG) signals elicited by specific brain activation. MEG was conducted during a silent reading task in 20 consecutive preoperative neurosurgical patients who also underwent a Wada test. The spatial distribution of oscillatory changes related to silent reading was shown tomographically with SAM as statistical images. Language dominance was estimated by the laterality index, which scales the lateralization of the beta (13-25 Hz) and low gamma (25-50 Hz) band desynchronizations in the inferior frontal gyrus (IFG) or middle frontal gyrus (MFG). Oscillatory changes were distributed multifocally and bilaterally in the occipital cortex, IFG or MFG, and temporo-parieto-occipital border regions. In 19 patients (95%), language lateralization estimated by the laterality index was congruent with the result of the Wada test. In left-handed patients, SAM analysis clearly differentiated language dominance (left, right, or bilateral), and the findings were confirmed by the Wada test. Lateralization of beta or low gamma band desynchronizations in the IFG or MFG is a good indicator of the side of language dominance. Reliability of MEG imaging with SAM is sufficient to evaluate language dominance preoperatively in neurosurgical patients.
Journal of Neurosurgery | 2007
Youichi Saitoh; Azuma Hirayama; Haruhiko Kishima; Toshio Shimokawa; Satoru Oshino; Masayuki Hirata; Naoki Tani; Amami Kato; Toshiki Yoshimine
OBJECT The authors previously reported that navigation-guided repetitive transcranial magnetic stimulation (rTMS) of the precentral gyrus relieves deafferentation pain. Stimulation parameters were 10 trains of 10-second 5-Hz TMS pulses at 50-second intervals. In the present study, they used various stimulation frequencies and compared efficacies between two types of lesions. METHODS Patients were divided into two groups: those with a cerebral lesion and those with a noncerebral lesion. The rTMS was applied to all the patients at frequencies of 1, 5, and 10 Hz and as a sham procedure in random order. The effect of rTMS on pain was rated by patients using a visual analog scale. RESULTS The rTMS at frequencies of 5 and 10 Hz, compared with sham stimulation, significantly reduced pain, and the pain reduction continued for 180 minutes. A stimulation frequency of 10 Hz may be more effective than 5 Hz, and at 1 Hz was ineffective. The effect of rTMS at frequencies of 5 and 10 Hz was greater in patients with a noncerebral lesion than those with a cerebral lesion. CONCLUSIONS High-frequency (5- or 10-Hz) rTMS of the precentral gyrus can reduce intractable deafferentation pain, but low-frequency stimulation (at 1 Hz) cannot. Patients with a noncerebral lesion are more suitable candidates for high-frequency rTMS of the precentral gyrus.
Pain | 2008
Tetsu Goto; Youichi Saitoh; Naoya Hashimoto; Masayuki Hirata; Haruhiko Kishima; Satoru Oshino; Naoki Tani; Koichi Hosomi; Ryusuke Kakigi; Toshiki Yoshimine
Abstract Central post‐stroke pain (CPSP) is one of the most common types of intractable pain. We reported that repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex relieves pain for patients who were refractory to medical treatment. But the mechanism is unclear. In the present study, we investigated relations between the characteristics of CPSP and the results of fiber tracking, which is the only noninvasive method of evaluating the anatomical connectivity of white matter pathways. Fiber tracking of the corticospinal tract (CST) and thalamocortical tract (TCT) was investigated in 17 patients with CPSP. The stroke lesion was located in a supratentorial region in all cases (corona radiata, one case; thalamus, seven cases; putamen, nine cases). Relations between the delineation ratio (defined as the ratio of the cross section of the affected side to that of the unaffected side) of the CST and of the TCT, manual muscle test score, pain score, region of pain, and efficacy of rTMS were evaluated. Fiber tracking was successful in 13 patients with the stroke lesion involving the TCT. The rTMS‐effective group had higher delineation ratio of the CST (p = 0.02) and the TCT (p = 0.005) than the rTMS‐ineffective group. Previous studies suggested that an intact CST allows pain control but did not discuss the TCT. Our results suggest that the TCT also plays a role in pain reduction by rTMS of the primary motor cortex and that the efficacy of rTMS for patients with CPSP is predictable by fiber tracking.
Acta neurochirurgica | 2006
Youichi Saitoh; Azuma Hirayama; Haruhiko Kishima; Satoru Oshino; Masayuki Hirata; Amami Kato; Toshiki Yoshimine
To treat intractable deafferentation pains, we prefer stimulation of the primary motor cortex (M1). The methods of stimulation we utilize are electrical stimulation and repetitive transcranial magnetic stimulation (rTMS). In our department, we first attempt rTMS, and if this rTMS is effective, we recommend the patient to undergo procedures for motor cortex stimulation (MCS). A 90% intensity of resting motor threshold setting is used for rTMS treatment. In this study ten trains of 5 Hz rTMS for 10 seconds (50 seconds resting interval) were applied to the M1, S1, pre-motor and supplementary motor areas. Only M1 stimulation was effective for pain reduction in 10 of 20 patients (50%). Twenty-nine MCS procedures were performed by subdural implantation of electrodes, and in the case of hand or face pain, electrodes were implanted within the central sulcus (11 cases), because the main part of M1 is located in the central sulcus in humans. The success rate of MCS was around 63%, and seemed to be higher in cases of pain with spinal cord and peripheral origins, while it was lower in cases of post-stroke pain.
NeuroImage | 2009
Takufumi Yanagisawa; Masayuki Hirata; Youichi Saitoh; Amami Kato; Daisuke Shibuya; Yukiyasu Kamitani; Toshiki Yoshimine
Electrocorticography of the primary motor cortex (M1) is a promising tool for controlling a brain-computer interface (BCI). Electrocorticograms (ECoG) of the human M1 within the central sulcus (intrasulcal ECoG) have been rarely examined. In order to evaluate the usefulness of intrasulcal ECoG for BCI, we examined patients with subdural electrodes placed temporarily inside the central sulcus and over the sensorimotor cortex (gyral ECoG). Five patients were asked to perform or imagine two or three classes of simple upper limb movements. Univariate statistical analysis of the results revealed that the intrasulcal ECoG on M1 showed significant variability across movement classes. A support vector machine was used for classification of single-trial ECoG signals to infer movement class (neural decoding). The movement classes were predicted with 80-90% accuracy (chance level: 33% or 50%). To reveal the relative importance of anatomical areas for neural decoding, the decoding performance was compared between gyral and intrasulcal ECoGs. The intrasulcal ECoG on the motor bank showed higher performance than the equally-sized gyral ECoG or the intrasulcal ECoG on the sensory bank. Analysis using a short time window revealed that movement class could be decoded even before movement onset. These results suggest the usefulness of intrasulcal ECoG on M1 to infer upper limb movements and present a promising application for a practical BCI system.
Neuroscience Letters | 2002
Masayuki Hirata; Amami Kato; Masaaki Taniguchi; Hirotomo Ninomiya; Douglas Cheyne; Stephen E. Robinson; Motohiko Maruno; Eiji Kumura; Ryouhei Ishii; Norio Hirabuki; Hironobu Nakamura; Toshiki Yoshimine
Using synthetic aperture magnetometry (SAM), we examined the spatial distribution of frequency changes in magnetoencephalography signal rhythms on individual magnetic resonance images following somatosensory stimulation. SAM is a novel statistical spatial filtering method that uses an adaptive beamformer. Electrical stimulation of the right median nerve demonstrated high-frequency event-related synchronization (ERS) in the 50-200-Hz range, consistently localized in the contralateral primary sensorimotor area in all subjects (n=7). Event-related desynchronization (ERD) was demonstrated in the 8-13, 13-25 and 25-50-Hz ranges bilaterally in the area surrounding the central sulcus. The differences in the spatial distribution as well as the frequency bands between ERS and ERD suggest that ERS and ERD reflect the responses of different cell assemblies rather than a frequency shift of the same cell assembly.