Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Machida is active.

Publication


Featured researches published by Masayuki Machida.


Nature | 2005

Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae

James E. Galagan; Sarah E. Calvo; Christina A. Cuomo; Li-Jun Ma; Jennifer R. Wortman; Serafim Batzoglou; Su-In Lee; Meray Baştürkmen; Christina C. Spevak; John Clutterbuck; Vladimir V. Kapitonov; Jerzy Jurka; Claudio Scazzocchio; Mark L. Farman; Jonathan Butler; Seth Purcell; Steve Harris; Gerhard H. Braus; Oliver W. Draht; Silke Busch; Christophe d'Enfert; Christiane Bouchier; Gustavo H. Goldman; Deborah Bell-Pedersen; Sam Griffiths-Jones; John H. Doonan; Jae-Hyuk Yu; Kay Vienken; Arnab Pain; Michael Freitag

The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.


Nature | 2005

Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus.

William C. Nierman; Arnab Pain; Michael J. Anderson; Jennifer R. Wortman; H. Stanley Kim; Javier Arroyo; Matthew Berriman; Keietsu Abe; David B. Archer; Clara Bermejo; Joan W. Bennett; Paul Bowyer; Dan Chen; Matthew Collins; Richard Coulsen; Robert Davies; Paul S. Dyer; Mark L. Farman; Nadia Fedorova; Natalie D. Fedorova; Tamara V. Feldblyum; Reinhard Fischer; Nigel Fosker; Audrey Fraser; José Luis García; María José García; Ariette Goble; Gustavo H. Goldman; Katsuya Gomi; Sam Griffith-Jones

Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable compost heaps. In immunocompromised individuals, the incidence of invasive infection can be as high as 50% and the mortality rate is often about 50% (ref. 2). The interaction of A. fumigatus and other airborne fungi with the immune system is increasingly linked to severe asthma and sinusitis. Although the burden of invasive disease caused by A. fumigatus is substantial, the basic biology of the organism is mostly obscure. Here we show the complete 29.4-megabase genome sequence of the clinical isolate Af293, which consists of eight chromosomes containing 9,926 predicted genes. Microarray analysis revealed temperature-dependent expression of distinct sets of genes, as well as 700 A. fumigatus genes not present or significantly diverged in the closely related sexual species Neosartorya fischeri, many of which may have roles in the pathogenicity phenotype. The Af293 genome sequence provides an unparalleled resource for the future understanding of this remarkable fungus.


Nature | 2005

Genome sequencing and analysis of Aspergillus oryzae

Masayuki Machida; Kiyoshi Asai; Motoaki Sano; Toshihiro Tanaka; Toshitaka Kumagai; Goro Terai; Ken Ichi Kusumoto; Toshihide Arima; Osamu Akita; Yutaka Kashiwagi; Keietsu Abe; Katsuya Gomi; Hiroyuki Horiuchi; Katsuhiko Kitamoto; Tetsuo Kobayashi; Michio Takeuchi; David W. Denning; James E. Galagan; William C. Nierman; Jiujiang Yu; David B. Archer; Joan W. Bennett; Deepak Bhatnagar; Thomas E. Cleveland; Natalie D. Fedorova; Osamu Gotoh; Hiroshi Horikawa; Akira Hosoyama; Masayuki Ichinomiya; Rie Igarashi

The genome of Aspergillus oryzae, a fungus important for the production of traditional fermented foods and beverages in Japan, has been sequenced. The ability to secrete large amounts of proteins and the development of a transformation system have facilitated the use of A. oryzae in modern biotechnology. Although both A. oryzae and Aspergillus flavus belong to the section Flavi of the subgenus Circumdati of Aspergillus, A. oryzae, unlike A. flavus, does not produce aflatoxin, and its long history of use in the food industry has proved its safety. Here we show that the 37-megabase (Mb) genome of A. oryzae contains 12,074 genes and is expanded by 7–9 Mb in comparison with the genomes of Aspergillus nidulans and Aspergillus fumigatus. Comparison of the three aspergilli species revealed the presence of syntenic blocks and A. oryzae-specific blocks (lacking synteny with A. nidulans and A. fumigatus) in a mosaic manner throughout the genome of A. oryzae. The blocks of A. oryzae-specific sequence are enriched for genes involved in metabolism, particularly those for the synthesis of secondary metabolites. Specific expansion of genes for secretory hydrolytic enzymes, amino acid metabolism and amino acid/sugar uptake transporters supports the idea that A. oryzae is an ideal microorganism for fermentation.


Nature Genetics | 2005

System-level identification of transcriptional circuits underlying mammalian circadian clocks

Hiroki R. Ueda; Satoko Hayashi; Wenbin Chen; Motoaki Sano; Masayuki Machida; Yasufumi Shigeyoshi; Masamitsu Iino; Seiichi Hashimoto

Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E′ boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E′ boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E′ boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.


Medical Mycology | 2006

Whole genome comparison of Aspergillus flavus and A. oryzae

Gary A. Payne; William C. Nierman; Jennifer R. Wortman; B. L. Pritchard; Doug Brown; Ralph A. Dean; Deepak Bhatnagar; Thomas E. Cleveland; Masayuki Machida; Jiujiang Yu

Aspergillus flavus is a plant and animal pathogen that also produces the potent carcinogen aflatoxin. Aspergillus oryzae is a closely related species that has been used for centuries in the food fermentation industry and is Generally Regarded As Safe (GRAS). Whole genome sequences for these two fungi are now complete, providing us with the opportunity to examine any genomic differences that may explain the different ecological niches of these two fungi, and perhaps to identify pathogenicity factors in A. flavus. These two fungi are very similar in genome size and number of predicted genes. The estimated genome size (36·8 Mb) and predicted number of genes (12 197) for A. flavus is similar to that of A. oryzae (36·7 Mb and 12 079, respectively). These two fungi have significantly larger genomes than Aspergillus nidulans (30·1) and Aspergillus fumigatus (29·4). The A. flavus and A. oryzae genomes are enriched in genes for secondary metabolism, but do not differ greatly from one another in the predicted number of polyketide synthases, nonribosomal peptide synthases or the number of genes coding for cytochrome P450 enzymes. A micro-scale analysis of the two fungi did show differences in DNA correspondence between the two species and in the number of transposable elements. Each species has approximately 350 unique genes. The high degree of sequence similarity between the two fungi suggests that they may be ecotypes of the same species and that A. oryzae has resulted from the domestication of A. flavus.


DNA Research | 2008

Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future

Masayuki Machida; Osamu Yamada; Katsuya Gomi

At a time when the notion of microorganisms did not exist, our ancestors empirically established methods for the production of various fermentation foods: miso (bean curd seasoning) and shoyu (soy sauce), both of which have been widely used and are essential for Japanese cooking, and sake, a magical alcoholic drink consumed at a variety of ritual occasions, are typical examples. A filamentous fungus, Aspergillus oryzae, is the key organism in the production of all these traditional foods, and its solid-state cultivation (SSC) has been confirmed to be the secret for the high productivity of secretory hydrolases vital for the fermentation process. Indeed, our genome comparison and transcriptome analysis uncovered mechanisms for effective degradation of raw materials in SSC: the extracellular hydrolase genes that have been found only in the A. oryzae genome but not in A. fumigatus are highly induced during SSC but not in liquid cultivation. Also, the temperature reduction process empirically adopted in the traditional soy-sauce fermentation processes has been found to be important to keep strong expression of the A. oryzae-specific extracellular hydrolases. One of the prominent potentials of A. oryzae is that it has been successfully applied to effective degradation of biodegradable plastic. Both cutinase, responsible for the degradation of plastic, and hydrophobin, which recruits cutinase on the hydrophobic surface to enhance degradation, have been discovered in A. oryzae. Genomic analysis in concert with traditional knowledge and technology will continue to be powerful tools in the future exploration of A. oryzae.


Bioscience, Biotechnology, and Biochemistry | 2007

Genomics of Aspergillus oryzae

Tetsuo Kobayashi; Keietsu Abe; Kiyoshi Asai; Katsuya Gomi; Praveen Rao Juvvadi; Masashi Kato; Katsuhiko Kitamoto; Michio Takeuchi; Masayuki Machida

The genome sequence of Aspergillus oryzae, a fungus used in the production of the traditional Japanese fermentation foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste), has revealed prominent features in its gene composition as compared to those of Saccharomyces cerevisiae and Neurospora crassa. The A. oryzae genome is extremely enriched with genes involved in biomass degradation, primary and secondary metabolism, transcriptional regulation, and cell signaling. Even compared to the related species A. nidulans and A. fumigatus, an abundance of metabolic genes is apparent, with acquisition of more than 6 Mb of sequence in the A. oryzae lineage, interspersed throughout the A. oryzae genome. Besides the various already established merits of A. oryzae for industrial uses, the genome sequence and the abundance of metabolic genes should significantly accelerate the biotechnological use of A. oryzae in industry.


Applied Microbiology and Biotechnology | 2004

Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags

Hiroshi Maeda; Motoaki Sano; Yutaka Maruyama; Takeki Tanno; Takeshi Akao; Yoshiteru Totsuka; Misako Endo; Rumi Sakurada; Youhei Yamagata; Masayuki Machida; Osamu Akita; Fumihiko Hasegawa; Keietsu Abe; Katsuya Gomi; Tasuku Nakajima; Yasutaka Iguchi

Aspergillus oryzae is a fungus used extensively in the fermentation industry. We constructed cDNA microarrays comprising 2,070 highly expressed cDNAs selected from the ∼6,000 non-redundant expressed sequence tags (ESTs) in the A. oryzae EST database (http://www.aist.go.jp/RIODB/ffdb/index.html). Using the cDNA microarrays, we analyzed the gene expression profiles of A. oryzae cells grown under the glucose-rich (AC) and glucose-depleted (AN) liquid culture conditions used during the construction of the EST database. The sets of genes identified by the cDNA microarray as highly expressed under each culture condition agreed well with the highly redundant ESTs obtained under the same conditions. In particular, transcription levels of most catabolic genes of the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle were higher under AC than AN conditions, suggesting that A. oryzae uses both EMP and TCA for glucose metabolism under AC conditions. We further studied the expression of genes encoding hydrolytic enzymes and enzymes involved in energy catabolism by using three industrial solid-phase biomass media, including wheat-bran. The wheat-bran culture gave the richest gene expression profile of hydrolytic enzymes and the lowest expression levels of catabolic genes (EMP, TCA) among the three media tested. The low expression levels of catabolic genes in the wheat-bran culture may release catabolite repression, consequently leading to the rich expression profiles of the hydrolytic enzymes.


PLOS ONE | 2013

Aspergillus luchuensis, an Industrially Important Black Aspergillus in East Asia

Seung Beom Hong; Mina Lee; János Varga; Jens Christian Frisvad; Giancarlo Perrone; Katsuya Gomi; Osamu Yamada; Masayuki Machida; Jos Houbraken; Robert A. Samson

Aspergilli known as black- and white-koji molds which are used for awamori, shochu, makgeolli and other food and beverage fermentations, are reported in the literature as A. luchuensis, A. awamori, A. kawachii, or A. acidus. In order to elucidate the taxonomic position of these species, available ex-type cultures were compared based on morphology and molecular characters. A. luchuensis, A. kawachii and A. acidus showed the same banding patterns in RAPD, and the three species had the same rDNA-ITS, β-tubulin and calmodulin sequences and these differed from those of the closely related A. niger and A. tubingensis. Morphologically, the three species are not significantly different from each other or from A. niger and A. tubingensis. It is concluded that A. luchuensis, A. kawachii and A. acidus are the same species, and A. luchuensis is selected as the correct name based on priority. Strains of A. awamori which are stored in National Research Institute of Brewing in Japan, represent A. niger (n = 14) and A. luchuensis (n = 6). The neotype of A. awamori (CBS 557.65 =  NRRL 4948) does not originate from awamori fermentation and it is shown to be identical with the unknown taxon Aspergillus welwitschiae. Extrolite analysis of strains of A. luchuensis showed that they do not produce mycotoxins and therefore can be considered safe for food and beverage fermentations. A. luchuensis is also frequently isolated from meju and nuruk in Korea and Puerh tea in China and the species is probably common in the fermentation environment of East Asia. A re-description of A. luchuensis is provided because the incomplete data in the original literature.


Mycopathologia | 2006

Impact of Aspergillus oryzae genomics on industrial production of metabolites.

Keietsu Abe; Katusya Gomi; Fumihiko Hasegawa; Masayuki Machida

Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses.

Collaboration


Dive into the Masayuki Machida's collaboration.

Top Co-Authors

Avatar

Motoaki Sano

Kanazawa Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuya Gomi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hideaki Koike

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Koichi Tamano

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myco Umemura

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroko Hagiwara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hideji Tajima

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge