Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Numata is active.

Publication


Featured researches published by Masayuki Numata.


Journal of Biological Chemistry | 2012

Structure-Activity Analysis of Niclosamide Reveals Potential Role for Cytoplasmic pH in Control of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling

Bruno D. Fonseca; Graham H. Diering; Michael Bidinosti; Kush Dalal; Tommy Alain; Aruna D. Balgi; Roberto Forestieri; Matt Nodwell; Charles V. Rajadurai; Cynthia Gunaratnam; Andrew R. Tee; Franck Duong; Raymond J. Andersen; John Orlowski; Masayuki Numata; Nahum Sonenberg; Michel Roberge

Background: mTORC1 is dysregulated in human disease, and there is an interest in the development of mTORC1 inhibitors. Niclosamide inhibits mTORC1 signaling, but its mode of action remains unclear. Results: Niclosamide extrudes protons from lysosomes, thus lowering cytoplasmic pH and inhibiting mTORC1 signaling. Conclusion: Cytoplasmic acidification inhibits mTORC1 signaling. Significance: Our findings may aid the design of niclosamide-based anticancer therapeutic agents. Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.


PLOS ONE | 2011

Regulation of mTORC1 Signaling by pH

Aruna D. Balgi; Graham H. Diering; Elizabeth Donohue; Karen K. Y. Lam; Bruno D. Fonseca; Carla Zimmerman; Masayuki Numata; Michel Roberge

Background Acidification of the cytoplasm and the extracellular environment is associated with many physiological and pathological conditions, such as intense exercise, hypoxia and tumourigenesis. Acidification affects important cellular functions including protein synthesis, growth, and proliferation. Many of these vital functions are controlled by mTORC1, a master regulator protein kinase that is activated by various growth-stimulating signals and inactivated by starvation conditions. Whether mTORC1 can also respond to changes in extracellular or cytoplasmic pH and play a role in limiting anabolic processes in acidic conditions is not known. Methodology/Findings We examined the effects of acidifying the extracellular medium from pH 7.4 to 6.4 on human breast carcinoma MCF-7 cells and immortalized mouse embryo fibroblasts. Decreasing the extracellular pH caused intracellular acidification and rapid, graded and reversible inhibition of mTORC1, assessed by measuring the phosphorylation of the mTORC1 substrate S6K. Fibroblasts deleted of the tuberous sclerosis complex TSC2 gene, a major negative regulator of mTORC1, were unable to inhibit mTORC1 in acidic extracellular conditions, showing that the TSC1–TSC2 complex is required for this response. Examination of the major upstream pathways converging on the TSC1–TSC2 complex showed that Akt signaling was unaffected by pH but that the Raf/MEK/ERK pathway was inhibited. Inhibition of MEK with drugs caused only modest mTORC1 inhibition, implying that other unidentified pathways also play major roles. Conclusions This study reveals a novel role for the TSC1/TSC2 complex and mTORC1 in sensing variations in ambient pH. As a common feature of low tissue perfusion, low glucose availability and high energy expenditure, acidic pH may serve as a signal for mTORC1 to downregulate energy-consuming anabolic processes such as protein synthesis as an adaptive response to metabolically stressful conditions.


Journal of Cell Science | 2005

Secretory carrier membrane proteins interact and regulate trafficking of the organellar (Na+,K+)/H+ exchanger NHE7

Paulo J.C. Lin; Warren P. Williams; Yvonne Luu; Robert S. Molday; John Orlowski; Masayuki Numata

The mammalian (Na+,K+)/H+ exchanger NHE7 resides chiefly in the trans-Golgi network (TGN) and post-Golgi vesicles where it is thought to contribute to organellar pH homeostasis. However, the mechanisms that underlie the targeting and regulation of NHE7 are unknown. To gain insight into these processes, yeast two-hybrid methodology was used to screen a human brain cDNA library for proteins that interact with the cytoplasmic C-terminus of NHE7. One binding partner we identified was SCAMP2, a member of the secretory carrier membrane protein (SCAMP) gene family. Direct association of these two proteins was further supported by co-immunolocalization and co-immunoprecipitation analyses using transfected cells, by their co-sedimentation in membrane fractions resolved on sucrose density gradients, and by in vitro protein binding assays. Other members of the SCAMP family, such as SCAMP1 and SCAMP5, also associated with NHE7. The majority of the NHE7-SCAMP complexes accumulated at the TGN, but a minor fraction also resided in recycling vesicles. Biochemical analyses indicated that the C-terminal cytoplasmic tail of NHE7 bound preferentially to a highly conserved cytoplasmic loop between the second and the third transmembrane segments (TM2-TM3 loop) of SCAMP2. A deletion mutant of SCAMP2 lacking this region (SCAMP2/Δ184-208) bound weakly to NHE7, but caused a significant fraction of NHE7 and wild-type SCAMP2 to redistribute to a pool of scattered recycling vesicles without noticeably affecting the location of other resident TGN (syntaxin 6) or Golgi cisternae (GM130) proteins. Conversely, a GFP-tagged TM2-TM3 construct of SCAMP2 interacted with NHE7, but also led to the redistribution of NHE7 to dispersed vesicular structures. We propose a model wherein SCAMPs participate in the shuttling of NHE7 between recycling vesicles and the TGN.


Molecular Biology of the Cell | 2011

Regulation of dendritic spine growth through activity-dependent recruitment of the brain-enriched Na+/H+ exchanger NHE5

Graham H. Diering; Fergil Mills; Shernaz X. Bamji; Masayuki Numata

pH homeostasis in neurons plays crucial roles in normal synaptic functions. It is found that the Na+/H+ exchanger NHE5 is targeted to the synapse on neuronal activation, regulates the synaptic pH, and controls the morphology of dendritic spines.


Molecular Biology of the Cell | 2013

Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling

Graham H. Diering; Yuka Numata; Steven Fan; John Church; Masayuki Numata

The role of endosomal pH in neurite formation, one of the principal processes of neuronal differentiation, is unknown. This study shows that the neuron-enriched Na+/H+ exchanger NHE5 potently acidifies recycling endosomes and regulates TrkA trafficking, NGF-TrkA signaling, and neurite outgrowth.


The Journal of Neuroscience | 2009

Regulation of Early Neurite Morphogenesis by the Na+/H+ Exchanger NHE1

Wun-Chey Sin; David M. Moniz; Mark A. Ozog; Jessica E. Tyler; Masayuki Numata; John Church

The ubiquitously expressed Na+/H+ exchanger NHE1 plays an important role in regulating polarized membrane protrusion and directional motility in non-neuronal cells. Using NGF-differentiated PC12 cells and murine neocortical neurons in vitro, we now show that NHE1 plays a role in regulating early neurite morphogenesis. NHE1 was expressed in growth cones in which it gave rise to an elevated intracellular pH in actively extending neurites. The NHE1 inhibitor cariporide reversibly reduced growth cone filopodia number and the formation and elongation of neurites, especially branches, whereas the transient overexpression of full-length NHE1, but not NHE1 mutants deficient in either ion translocation activity or actin cytoskeletal anchoring, elicited opposite effects. In addition, compared with neocortical neurons obtained from wild-type littermates, neurons isolated from NHE1-null mice exhibited reductions in early neurite outgrowth, an effect that was rescued by overexpression of full-length NHE1 but not NHE1 mutants. Finally, the growth-promoting effects of netrin-1, but not BDNF or IGF-1, were markedly reduced by cariporide in wild-type neocortical neurons and were not observed in NHE1-null neurons. Although netrin-1 failed to increase growth cone intracellular pH or Na+/H+ exchange activity, netrin-1-induced increases in early neurite outgrowth were restored in NHE1-null neurons transfected with full-length NHE1 but not an ion translocation-deficient mutant. Collectively, the results indicate that NHE1 participates in the regulation of early neurite morphogenesis and identify a novel role for NHE1 in the promotion of early neurite outgrowth by netrin-1.


Journal of Biological Chemistry | 2009

Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5

Graham H. Diering; John Church; Masayuki Numata

NHE5 is a brain-enriched Na+/H+ exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.


Molecular Membrane Biology | 2008

Identification and biochemical characterization of the SLC9A7 interactome

Takashi Kagami; Sam Chen; Pouya Memar; Matthew Choi; Leonard J. Foster; Masayuki Numata

Organellar and cytosolic pH homeostasis is central to most cellular processes, including vesicular trafficking, post-translational modification/processing of proteins, and receptor-ligand interactions. SLC9A7 (NHE7) was identified as a unique (Na+, K+)/H+ exchanger that dynamically cycles between the trans-Golgi network (TGN), endosomes and the plasma membrane. Here we have used mass spectrometry to explore the affinity-captured interactome of NHE7, leading to the identification of cytoskeletal proteins, cell adhesion molecules, membrane transporters, and signaling molecules. Among these binding proteins, calcium-calmodulin, but not apo-calmodulin, binds to NHE7 and regulates the organellar transporter activity. Vimentin was co-immunoprecipitated with endogenous NHE7 protein in human breast cancer MDA-MB-231 cells. A sizable population of NHE7 relocalized to focal complexes in migrating cells and showed colocalization with vimentin and actin in focal complexes. Among the NHE7-binding proteins identified, CD44, a cell surface glycoprotein receptor for hyaluronate and other ligands, showed regulated interaction with NHE7. Pretreatment of the cells with phorbol ester facilitated the NHE7-CD44 interaction and the lipid raft association of CD44. When lipid rafts were chemically disrupted, the NHE7-CD44 interaction was markedly reduced. These results suggest potential dual roles of NHE7 in intracellular compartments and subdomains of cell-surface membranes.


Frontiers in Physiology | 2014

Endosomal pH in neuronal signaling and synaptic transmission: role of Na + /H + exchanger NHE5

Graham H. Diering; Masayuki Numata

Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.


Journal of Biological Chemistry | 2014

Activation of AMP-activated Protein Kinase Regulates Hippocampal Neuronal pH by Recruiting Na+/H+ Exchanger NHE5 to the Cell Surface

Tushare Jinadasa; Elöd Z. Szabó; Masayuki Numata; John Orlowski

Background: Vesicular Na+/H+ exchanger NHE5 is implicated in neuronal pH homeostasis, but its role is poorly understood. Results: Activation of AMP-activated protein kinase (AMPK) increases plasmalemmal NHE5 abundance and activity in response to metabolic stress-induced acidosis. Conclusion: Interaction of NHE5 and AMPK represents a novel mechanism for coupling energy metabolism to pH regulation in nervous tissue. Significance: These findings provide new insight into nervous system pH homeostasis. Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H+-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na+/H+ exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.

Collaboration


Dive into the Masayuki Numata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham H. Diering

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Church

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Michel Roberge

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Paulo J.C. Lin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yuka Numata

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Aruna D. Balgi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Bruno D. Fonseca

Children's Hospital of Eastern Ontario

View shared research outputs
Top Co-Authors

Avatar

Steven Fan

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge