Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Saijo is active.

Publication


Featured researches published by Masayuki Saijo.


PLOS ONE | 2012

Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever.

Andrea Marzi; Reiko Yoshida; Hiroko Miyamoto; Mari Ishijima; Yasuhiko Suzuki; Megumi Higuchi; Yukie Matsuyama; Manabu Igarashi; Eri Nakayama; Makoto Kuroda; Masayuki Saijo; Friederike Feldmann; Douglas Brining; Heinz Feldmann; Ayato Takada

Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.


Frontiers in Microbiology | 2013

Animal models for Ebola and Marburg virus infections

Eri Nakayama; Masayuki Saijo

Ebola and Marburg hemorrhagic fevers (EHF and MHF) are caused by the Filoviridae family, Ebolavirus and Marburgvirus (ebolavirus and marburgvirus), respectively. These severe diseases have high mortality rates in humans. Although EHF and MHF are endemic to sub-Saharan Africa. A novel filovirus, Lloviu virus, which is genetically distinct from ebolavirus and marburgvirus, was recently discovered in Spain where filoviral hemorrhagic fever had never been reported. The virulence of this virus has not been determined. Ebolavirus and marburgvirus are classified as biosafety level-4 (BSL-4) pathogens and Category A agents, for which the US government requires preparedness in case of bioterrorism. Therefore, preventive measures against these viral hemorrhagic fevers should be prepared, not only in disease-endemic regions, but also in disease-free countries. Diagnostics, vaccines, and therapeutics need to be developed, and therefore the establishment of animal models for EHF and MHF is invaluable. Several animal models have been developed for EHF and MHF using non-human primates (NHPs) and rodents, which are crucial to understand pathophysiology and to develop diagnostics, vaccines, and therapeutics. Rhesus and cynomolgus macaques are representative models of filovirus infection as they exhibit remarkably similar symptoms to those observed in humans. However, the NHP models have practical and ethical problems that limit their experimental use. Furthermore, there are no inbred and genetically manipulated strains of NHP. Rodent models such as mouse, guinea pig, and hamster, have also been developed. However, these rodent models require adaptation of the virus to produce lethal disease and do not mirror all symptoms of human filovirus infection. This review article provides an outline of the clinical features of EHF and MHF in animals, including humans, and discusses how the animal models have been developed to study pathophysiology, vaccines, and therapeutics.


Journal of Clinical Microbiology | 2002

Immunofluorescence Technique Using HeLa Cells Expressing Recombinant Nucleoprotein for Detection of Immunoglobulin G Antibodies to Crimean-Congo Hemorrhagic Fever Virus

Masayuki Saijo; Tang Qing; Masahiro Niikura; Akihiko Maeda; Tetsuro Ikegami; Koji Sakai; Christophe Prehaud; Ichiro Kurane; Shigeru Morikawa

ABSTRACT A HeLa cell line continuously expressing recombinant nucleoprotein (rNP) of the Crimean-Congo hemorrhagic fever virus (CCHFV) was established by transfection with an expression vector containing the cDNA of CCHFV NP (pKS336-CCHFV-NP). These cells were used as antigens for indirect immunofluorescence (IF) to detect immunoglobulin G antibodies to CCHFV. The sensitivity and specificity of this IF technique were examined by using serum samples and were compared to those of the IF technique using CCHFV-infected Vero E6 cells (authentic antigen). Staining of the CCHFV rNP expressed in HeLa cells showed a unique granular pattern similar to that of CCHFV-infected Vero E6 cells. Positive staining could easily be distinguished from a negative result. All 13 serum samples determined to be positive by using the authentic antigen were also determined to be positive by using CCHFV rNP-expressing HeLa cells (recombinant antigen). The 108 serum samples determined to be negative by using the authentic antigen were also determined to be negative by using the recombinant antigen. Thus, both the sensitivity and the specificity of this IF technique were 100% compared to the IF with authentic antigen. The novel IF technique using CCHFV rNP-expressing HeLa cells can be used not only for diagnosis of CCHF but also for epidemiological studies on CCHFV infections.


Biochemical and Biophysical Research Communications | 2004

Phosphorylation of p38 MAPK and its downstream targets in SARS coronavirus-infected cells

Tetsuya Mizutani; Shuetsu Fukushi; Masayuki Saijo; Ichiro Kurane; Shigeru Morikawa

Abstract Severe acute respiratory syndrome (SARS) has become a global public health emergency. Understanding the molecular mechanisms of SARS-induced cytopathic effects (CPEs) is a rational approach for the prevention of SARS, and an understanding of the cellular stress responses induced by viral infection is important for understanding the CPEs. Polyclonal antibodies, which recognized nucleocapsid (N) and membrane (M) proteins, detected viral N and M proteins in virus-infected Vero E6 cells at least 6 and 12h post-infection (h.p.i.), respectively. Furthermore, detection of DNA ladder and cleaved caspase-3 in the virus-infected cells at 24h.p.i. indicated that SARS-CoV infection induced apoptotic cell death. Phosphorylation of p38 MAPK was significantly up-regulated at 18h.p.i. in SARS-CoV-infected cells. The downstream targets of p38 MAPK, MAPKAPK-2, HSP-27, CREB, and eIF4E were phosphorylated in virus-infected cells. The p38 MAPK inhibitor, SB203580, inhibited effectively phosphorylation of HSP-27, CREB, and eIF4E in SARS-CoV-infected cells. However, viral protein synthesis was not affected by treatment of SB203580.


Clinical and Vaccine Immunology | 2010

Enzyme-Linked Immunosorbent Assay for Detection of Filovirus Species-Specific Antibodies

Eri Nakayama; Ayaka Yokoyama; Hiroko Miyamoto; Manabu Igarashi; Noriko Kishida; Keita Matsuno; Andrea Marzi; Heinz Feldmann; Kimihito Ito; Masayuki Saijo; Ayato Takada

ABSTRACT Several enzyme-linked immunosorbent assays (ELISAs) for the detection of filovirus-specific antibodies have been developed. However, diagnostic methods to distinguish antibodies specific to the respective species of filoviruses, which provide the basis for serological classification, are not readily available. We established an ELISA using His-tagged secreted forms of the transmembrane glycoproteins (GPs) of five different Ebola virus (EBOV) species and one Marburg virus (MARV) strain as antigens for the detection of filovirus species-specific antibodies. The GP-based ELISA was evaluated by testing antisera collected from mice immunized with virus-like particles as well as from humans and nonhuman primates infected with EBOV or MARV. In our ELISA, little cross-reactivity of IgG antibodies was observed in most of the mouse antisera. Although sera and plasma from some patients and monkeys showed notable cross-reactivity with the GPs from multiple filovirus species, the highest reactions of IgG were uniformly detected against the GP antigen homologous to the virus species that infected individuals. We further confirmed that MARV-specific IgM antibodies were specifically detected in specimens collected from patients during the acute phase of infection. These results demonstrate the usefulness of our ELISA for diagnostics as well as ecological and serosurvey studies.


Emerging Infectious Diseases | 2011

Reston Ebolavirus antibodies in bats, the Philippines.

Satoshi Taniguchi; Shumpei Watanabe; Joseph S. Masangkay; Tsutomu Omatsu; Tetsuro Ikegami; Phillip A. Alviola; Naoya Ueda; Koichiro Iha; Hikaru Fujii; Yoshiyuki Ishii; Tetsuya Mizutani; Shuetsu Fukushi; Masayuki Saijo; Ichiro Kurane; Shigeru Kyuwa; Hiroomi Akashi; Yasuhiro Yoshikawa; Shigeru Morikawa

To the Editor: Filoviruses cause highly lethal hemorrhagic fever in humans and nonhuman primates, except for Reston Ebolavirus (REBOV), which causes severe hemorrhagic fever in macaques (1,2). REBOV epizootics among cynomolgus macaques occurred in 1989, 1990, 1992, and 1996 (2) and among swine in 2008 (3). African fruit bats have been suggested to be natural reservoirs for Zaire Ebolavirus and Marburg virus (4–6). However, the natural reservoir of REBOV in the Philippines is unknown. Thus, we determined the prevalence of REBOV antibody–positive bats in the Philippines. Permission for this study was obtained from the Department of Environment and Natural Resources, the Philippines, before collecting bat specimens. Serum specimens from 141 wild-caught bats were collected at several locations during 2008–2009. The bat species tested are summarized in the Table. Captured bats were humanely killed and various tissues were obtained. Carcasses were then provided to the Department of Environment and Natural Resources for issuance of a transport permit. Table REBOV-specific IgG in Rousettus amplexicaudatus bats and other bats, the Philippines* We used immunoglobulin (Ig) G ELISAs with recombinant nucleoprotein (NP) and glycoprotein (GP) of REBOV (7) to determine REBOV antibody prevalence. REBOV NP and GP were expressed and purified from Tn5 cells infected with recombinant baculoviruses AcResNP and AcResGPDTM, which express NP and the ectodomain of GP with the histidine tag at its C-terminus. We also used histidine-tagged recombinant Crimean-Congo hemorrhagic fever virus NP as a negative control antigen in the IgG ELISA to confirm specificity of reactivity. In IgG ELISAs for bat specimens, positive results were detected by using rabbit anti-bat IgG and horseradish peroxidase–conjugated anti-rabbit IgG. Anti-bat (Rousettus aegyptiacus) rabbit IgG strongly cross-reacts with IgGs of other bat species, including insectivorous bats (8). Bat serum samples were 4-fold serially diluted (1:100–1:6,400) and tested by using IgG ELISAs. Results of IgG ELISAs were the sum of optical densities at serum dilutions of 1:100, 1:400, 1:1,600, and 1:6,400. Cutoff values (0.82 for both IgG ELISAs) were determined by using serum specimens from REBOV antibody–negative bats. Among 16 serum samples from R. amplexicaudatus bats, 5 (31%) captured at either the forest of Diliman (14°38′N, 121°2′E) or the forest of Quezon (14°10′N, 121°50′E) had positive results in the IgG ELISA for REBOV NP, and 5 (31%) captured at the forest of Quezon had positive results in the IgG ELISA for REBOV GP. The REBOV NP antibody–positive bats serum samples were confirmed to be NP antibody positive in the IgG ELISA by using glutathione-S-transferase–tagged partial REBOV NP antigen (9). Three samples had positive results in both IgG ELISAs (Table). Serum samples from other bat species had negative results in IgG ELISAs. All bat serum samples were also tested by indirect immunofluorescence assays (IFAs) that used HeLa cells expressing NP and GP (10). In the IFAs, 2 samples from R. amplexicaudatus bats captured at the forest of Diliman and the forest of Quezon had high titers (1,280 and 640, respectively) of NP-specific antibodies, and 1 sample from an R. amplexicaudatus bat captured at the forest of Quezon had a positive result in the GP-specific IFA (titer 20). All IFA-positive samples were also positive in the IgG ELISA (Table). The forest of Diliman is ≈30 km from the monkey facility and the Bulacan farm where REBOV infections in monkeys and swine, respectively, were detected. The forest of Quezon is ≈60 km from the monkey facility. Samples from other bat species had negative results in IFAs. We also performed heminested reverse transcription PCR specific for the REBOV NP gene with spleen specimens from all 16 R. amplexicaudatus bats but failed to detect any REBOV-specific amplicons. REBOV-specific antibodies were detected only in R. amplexicaudatus bats, a common species of fruit bat, in the Philippines. In Africa, R. aegyptiacus bats, which are genetically similar to R. amplexicaudatus bats, have been shown to be naturally infected with Zaire Ebolavirus and Marburg virus. Thus, R. amplexicaudatus bats are a possible natural reservoir of REBOV. However, only 16 specimens of R. amplexicaudatus bats were available in this study, and it will be necessary to investigate more specimens of this species to detect the REBOV genome or antigens to conclude the bat is a natural reservoir for REBOV. We have shown that R. amplexicaudatus bats are putatively infected with REBOV or closely related viruses in the Philippines. Antibody-positive bats were captured at the sites near the study areas, where REBOV infections in cynomolgus monkeys and swine have been identified. Thus, bats are a possible natural reservoir of REBOV. Further analysis to demonstrate the REBOV genome in bats is necessary to conclude that the bat is a reservoir of REBOV.


Journal of Clinical Microbiology | 2001

Enzyme-Linked Immunosorbent Assays for Detection of Antibodies to Ebola and Marburg Viruses Using Recombinant Nucleoproteins

Masayuki Saijo; Masahiro Niikura; Shigeru Morikawa; Thomas G. Ksiazek; Richard F. Meyer; Clarence J. Peters; Ichiro Kurane

ABSTRACT The full-length nucleoprotein (NP) of Ebola virus (EBO) was expressed as a His-tagged recombinant protein (His-EBO-NP) by a baculovirus system. Carboxy-terminal halves of NPs of EBO and Marburg virus (MBG) were expressed as glutathioneS-transferase-tagged recombinant proteins in anEscherichia coli system. The antigenic regions on the NPs of EBO and MBG were determined by both Western blotting and enzyme-linked immunosorbent assay (ELISA) to be located on the C-terminal halves. The C-terminal 110 and 102 amino acids of the NPs of EBO and MBG, respectively, possess strong antigenicity. The full-length NP of EBO was strongly expressed in insect cells upon infection with the recombinant baculovirus, while expression of the full-length NP of MBG was weak. We developed an immunoglobulin G (IgG) ELISA using His-EBO-NP and the C-terminal halves of the NPs of EBO and MBG as antigens. We evaluated the IgG ELISA for the ability to detect IgG antibodies to EBO and MBG, using human sera collected from EBO and MBG patients. The IgG ELISA with the recombinant NPs showed high sensitivity and specificity in detecting EBO and MBG antibodies. The results indicate that ELISA systems prepared with the recombinant NPs of EBO and MBG are valuable tools for the diagnosis of EBO and MBG infections and for seroepidemiological field studies.


Journal of Virology | 2005

An Attenuated LC16m8 Smallpox Vaccine: Analysis of Full-Genome Sequence and Induction of Immune Protection

Shigeru Morikawa; Tokuki Sakiyama; Hideki Hasegawa; Masayuki Saijo; Akihiko Maeda; Ichiro Kurane; Go Maeno; Junko Kimura; Chie Hirama; Teruhiko Yoshida; Yasuko Asahi-Ozaki; Tetsutaro Sata; Takeshi Kurata; Asato Kojima

ABSTRACT The potential threat of smallpox bioterrorism has made urgent the development of lower-virulence vaccinia virus vaccines. An attenuated LC16m8 (m8) vaccine was developed in 1975 from the Lister strain used in the World Health Organization smallpox eradication program but was not used against endemic smallpox. Today, no vaccines can be tested with variola virus for efficacy in humans, and the mechanisms of immune protection against the major intracellular mature virion (IMV) and minor extracellular enveloped virion (EEV) populations of poxviruses are poorly understood. Here, we determined the full-genome sequences of the m8, parental LC16mO (mO), and grandparental Lister (LO) strains and analyzed their evolutionary relationships. Sequence data and PCR analysis indicated that m8 was a progeny of LO and that m8 preserved almost all of the open reading frames of vaccinia virus except for the disrupted EEV envelope gene B5R. In accordance with this genomic background, m8 induced 100% protection against a highly pathogenic vaccinia WR virus in mice by a single vaccination, despite the lack of anti-B5R and anti-EEV antibodies. The immunogenicity and priming efficacy with the m8 vaccine consisting mainly of IMV were as high as those with the intact-EEV parental mO and grandparental LO vaccines. Thus, mice vaccinated with 107 PFU of m8 produced low levels of anti-B5R antibodies after WR challenge, probably because of quick clearance of B5R-expressing WR EEV by strong immunity induced by the vaccination. These results suggest that priming with m8 IMV provides efficient protection despite undetectable levels of immunity against EEV.


Journal of Virology | 2006

LC16m8, a Highly Attenuated Vaccinia Virus Vaccine Lacking Expression of the Membrane Protein B5R, Protects Monkeys from Monkeypox

Masayuki Saijo; Yasushi Ami; Yuriko Suzaki; Noriyo Nagata; Naoko Iwata; Hideki Hasegawa; Momoko Ogata; Shuetsu Fukushi; Tetsuya Mizutani; Tetsutaro Sata; Takeshi Kurata; Ichiro Kurane; Shigeru Morikawa

ABSTRACT The potential threat of smallpox as a bioweapon has led to the production and stockpiling of smallpox vaccine in some countries. Human monkeypox, a rare but important viral zoonosis endemic to central and western Africa, has recently emerged in the United States. Thus, even though smallpox has been eradicated, a vaccinia virus vaccine that can induce protective immunity against smallpox and monkeypox is still invaluable. The ability of the highly attenuated vaccinia virus vaccine strain LC16m8, with a mutation in the important immunogenic membrane protein B5R, to induce protective immunity against monkeypox in nonhuman primates was evaluated in comparison with the parental Lister strain. Monkeys were immunized with LC16m8 or Lister and then infected intranasally or subcutaneously with monkeypox virus strain Liberia or Zr-599, respectively. Immunized monkeys showed no symptoms of monkeypox in the intranasal-inoculation model, while nonimmunized controls showed typical symptoms. In the subcutaneous-inoculation model, monkeys immunized with LC16m8 showed no symptoms of monkeypox except for a mild ulcer at the site of monkeypox virus inoculation, and those immunized with Lister showed no symptoms of monkeypox, while nonimmunized controls showed lethal and typical symptoms. These results indicate that LC16m8 prevents lethal monkeypox in monkeys, and they suggest that LC16m8 may induce protective immunity against smallpox.


Journal of Clinical Microbiology | 2001

Detection of Ebola Viral Antigen by Enzyme-Linked Immunosorbent Assay Using a Novel Monoclonal Antibody to Nucleoprotein

Masahiro Niikura; Tetsuro Ikegami; Masayuki Saijo; Ichiro Kurane; Mary E. Miranda; Shigeru Morikawa

ABSTRACT With the increase in international traffic, the risk of introducing rare but severe infectious diseases like Ebola hemorrhagic fever is increasing all over the world. However, the system for the diagnosis of Ebola virus infection is available in a limited number of countries. In the present study, we developed an Ebola virus antigen-detection enzyme-linked immunosorbent assay (ELISA) system using a novel monoclonal antibody (MAb) to the nucleoprotein (NP). This antibody recognized an epitope defined by a 26-amino-acid stretch near the C terminus of NP. In a sandwich ELISA system with the MAb, as little as 30 ng of purified recombinant NP (rNP) was detected. Although this MAb was prepared by immunization with rNP of subtype Zaire, it also reacted to the corresponding region of NP derived from the Reston and Sudan subtypes. These results suggest that our ELISA system should work with three of four Ebola subtypes. Furthermore, our ELISA system detected the NP in subtype Reston-infected monkey specimens, while the background level in noninfected specimens was very low, suggesting the usefulness of the ELISA for laboratory diagnosis with clinical specimens.

Collaboration


Dive into the Masayuki Saijo's collaboration.

Top Co-Authors

Avatar

Ichiro Kurane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shigeru Morikawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shuetsu Fukushi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Mizutani

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang-Kweng Lim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kazuo Nakamichi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masayuki Shimojima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tomohiko Takasaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Satoshi Taniguchi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hideki Hasegawa

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge