Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Yamasaki is active.

Publication


Featured researches published by Masayuki Yamasaki.


Nature | 2008

Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization

Masayuki Yamasaki; Wei Li; Daniel J. D. Johnson; James A. Huntington

Repeating intermolecular protein association by means of β-sheet expansion is the mechanism underlying a multitude of diseases including Alzheimer’s, Huntington’s and Parkinson’s and the prion encephalopathies. A family of proteins, known as the serpins, also forms large stable multimers by ordered β-sheet linkages leading to intracellular accretion and disease. These ‘serpinopathies’ include early-onset dementia caused by mutations in neuroserpin, liver cirrhosis and emphysema caused by mutations in α1-antitrypsin (α1AT), and thrombosis caused by mutations in antithrombin. Serpin structure and function are quite well understood, and the family has therefore become a model system for understanding the β-sheet expansion disorders collectively known as the conformational diseases. To develop strategies to prevent and reverse these disorders, it is necessary to determine the structural basis of the intermolecular linkage and of the pathogenic monomeric state. Here we report the crystallographic structure of a stable serpin dimer which reveals a domain swap of more than 50 residues, including two long antiparallel β-strands inserting in the centre of the principal β-sheet of the neighbouring monomer. This structure explains the extreme stability of serpin polymers, the molecular basis of their rapid propagation, and provides critical new insights into the structural changes which initiate irreversible β-sheet expansion.


EMBO Reports | 2011

Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer

Masayuki Yamasaki; Timothy J. Sendall; Mary C. Pearce; James C. Whisstock; James A. Huntington

α1‐Antitrypsin (α1AT) deficiency is a disease with multiple manifestations, including cirrhosis and emphysema, caused by the accumulation of stable polymers of mutant protein in the endoplasmic reticulum of hepatocytes. However, the molecular basis of misfolding and polymerization remain unknown. We produced and crystallized a trimeric form of α1AT that is recognized by an antibody specific for the pathological polymer. Unexpectedly, this structure reveals a polymeric linkage mediated by domain swapping the carboxy‐terminal 34 residues. Disulphide‐trapping and antibody‐binding studies further demonstrate that runaway C‐terminal domain swapping, rather than the s4A/s5A domain swap previously proposed, underlies polymerization of the common Z‐mutant of α1AT in vivo.


Journal of Biological Chemistry | 2010

Crystal Structure of Exotype Alginate Lyase Atu3025 from Agrobacterium tumefaciens

Akihito Ochiai; Masayuki Yamasaki; Bunzo Mikami; Wataru Hashimoto; Kousaku Murata

Alginate, a major component of the cell wall matrix in brown seaweeds, is degraded by alginate lyases through a β-elimination reaction. Almost all alginate lyases act endolytically on substrate, thereby yielding unsaturated oligouronic acids having 4-deoxy-l-erythro-hex-4-enepyranosyluronic acid at the nonreducing end. In contrast, Agrobacterium tumefaciens alginate lyase Atu3025, a member of polysaccharide lyase family 15, acts on alginate polysaccharides and oligosaccharides exolytically and releases unsaturated monosaccharides from the substrate terminal. The crystal structures of Atu3025 and its inactive mutant in complex with alginate trisaccharide (H531A/ΔGGG) were determined at 2.10- and 2.99-Å resolutions with final R-factors of 18.3 and 19.9%, respectively, by x-ray crystallography. The enzyme is comprised of an α/α-barrel + anti-parallel β-sheet as a basic scaffold, and its structural fold has not been seen in alginate lyases analyzed thus far. The structural analysis of H531A/ΔGGG and subsequent site-directed mutagenesis studies proposed the enzyme reaction mechanism, with His311 and Tyr365 as the catalytic base and acid, respectively. Two structural determinants, i.e. a short α-helix in the central α/α-barrel domain and a conformational change at the interface between the central and C-terminal domains, are essential for the exolytic mode of action. This is, to our knowledge, the first report on the structure of the family 15 enzyme.


Journal of Biological Chemistry | 2009

Crystal structure of family 14 polysaccharide lyase with pH-dependent modes of action

Kohei Ogura; Masayuki Yamasaki; Takashi Yamada; Bunzo Mikami; Wataru Hashimoto; Kousaku Murata

The Chlorella virus enzyme vAL-1 (38 kDa), a member of polysaccharide lyase family 14, degrades the Chlorella cell wall by cleaving the glycoside bond of the glucuronate residue (GlcA) through a β-elimination reaction. The enzyme consists of an N-terminal cell wall-attaching domain (11 kDa) and a C-terminal catalytic module (27 kDa). Here, we show the enzyme characteristics of vAL-1, especially its pH-dependent modes of action, and determine the structure of the catalytic module. vAL-1 also exhibited alginate lyase activity at alkaline pH, and truncation of the N-terminal domain increased the lyase activity by 50-fold at pH 7.0. The truncated form vAL-1(S) released di- to hexasaccharides from alginate at pH 7.0, whereas disaccharides were preferentially generated at pH 10.0. This indicates that vAL-1(S) shows two pH-dependent modes of action: endo- and exotypes. The x-ray crystal structure of vAL-1(S) at 1.2 Å resolution showed two antiparallel β-sheets with a deep cleft showing a β-jelly roll fold. The structure of GlcA-bound vAL-1(S) at pH 7.0 and 10.0 was determined: GlcA was found to be bound outside and inside the cleft at pH 7.0 and 10.0, respectively. This suggests that the electric charges at the active site greatly influence the binding mode of substrates and regulate endo/exo activity. Site-directed mutagenesis demonstrated that vAL-1(S) has a specific amino acid arrangement distinct from other alginate lyases crucial for catalysis. This is, to our knowledge, the first study in which the structure of a family 14 polysaccharide lyase with two different modes of action has been determined.


Journal of Biological Chemistry | 2010

Loop-Sheet Mechanism of Serpin Polymerization Tested by Reactive Center Loop Mutations

Masayuki Yamasaki; Timothy J. Sendall; Laura E. Harris; Giles M. W. Lewis; James A. Huntington

The serpin mechanism of protease inhibition involves the rapid and stable incorporation of the reactive center loop (RCL) into central β-sheet A. Serpins therefore require a folding mechanism that bypasses the most stable “loop-inserted” conformation to trap the RCL in an exposed and metastable state. This unusual feature of serpins renders them highly susceptible to point mutations that lead to the accumulation of hyperstable misfolded polymers in the endoplasmic reticulum of secretory cells. The ordered and stable protomer-protomer association in serpin polymers has led to the acceptance of the “loop-sheet” hypothesis of polymerization, where a portion of the RCL of one protomer incorporates in register into sheet A of another. Although this mechanism was proposed 20 years ago, no study has ever been conducted to test its validity. Here, we describe the properties of a variant of α1-antitrypsin with a critical hydrophobic section of the RCL substituted with aspartic acid (P8–P6). In contrast to the control, the variant was unable to polymerize when incubated with small peptides or when cleaved in the middle of the RCL (accepted models of loop-sheet polymerization). However, when induced by guanidine HCl or heat, the variant polymerized in a manner indistinguishable from the control. Importantly, the Asp mutations did not affect the ability of the Z or Siiyama α1-antitrypsin variants to polymerize in COS-7 cells. These results argue strongly against the loop-sheet hypothesis and suggest that, in serpin polymers, the P8–P6 region is only a small part of an extensive domain swap.


Bioscience, Biotechnology, and Biochemistry | 2005

Structure and function of bacterial super-biosystem responsible for import and depolymerization of macromolecules.

Wataru Hashimoto; Keiko Momma; Yukie Maruyama; Masayuki Yamasaki; Bunzo Mikami; Kousaku Murata

Generally, when microbes assimilate macromolecules, they incorporate low-molecular-weight products derived from macromolecules through the actions of extracellular degrading enzymes. However, a Gram-negative bacterium, Sphingomonas sp. A1, has a smart biosystem for the import and depolymerization of macromolecules. The bacterial cells directly incorporate a macromolecule, alginate, into the cytoplasm through a “superchannel”, as we named it. The superchannel consists of a pit on the cell surface, alginate-binding proteins in the periplasm, and an ATP-binding cassette transporter in the inner membrane. Cytoplasmic polysaccharide lyases depolymerize alginate into the constituent monosaccharides. Other than the proteins characterized so far, novel proteins (e.g., flagellin homologs) have been found to be crucial for the import and depolymerization of alginate through genomics- and proteomics-based identification, thus indicating that the biosystem is precisely constructed and regulated by diverse proteins. In this review, we focus on the structure and function of the bacterial biosystem together with the evolution of related proteins.


Acta Crystallographica Section D-biological Crystallography | 2012

Induced-fit motion of a lid loop involved in catalysis in alginate lyase A1-III

Bunzo Mikami; Mizuho Ban; Sachiko Suzuki; Hye-Jin Yoon; Osamu Miyake; Masayuki Yamasaki; Kohei Ogura; Yukie Maruyama; Wataru Hashimoto; Kousaku Murata

The structures of two mutants (H192A and Y246F) of a mannuronate-specific alginate lyase, A1-III, from Sphingomonas species A1 complexed with a tetrasaccharide substrate [4-deoxy-L-erythro-hex-4-ene-pyranosyluronate-(mannuronate)(2)-mannuronic acid] were determined by X-ray crystallography at around 2.2 Å resolution together with the apo form of the H192A mutant. The final models of the complex forms, which comprised two monomers (of 353 amino-acid residues each), 268-287 water molecules and two tetrasaccharide substrates, had R factors of around 0.17. A large conformational change occurred in the position of the lid loop (residues 64-85) in holo H192A and Y246F compared with that in apo H192A. The lid loop migrated about 14 Å from an open form to a closed form to interact with the bound tetrasaccharide and a catalytic residue. The tetrasaccharide was bound in the active cleft at subsites -3 to +1 as a substrate form in which the glycosidic linkage to be cleaved existed between subsites -1 and +1. In particular, the O(η) atom of Tyr68 in the closed lid loop forms a hydrogen bond to the side chain of a presumed catalytic residue, O(η) of Tyr246, which acts both as an acid and a base catalyst in a syn mechanism.


Journal of Biological Chemistry | 2008

Crystal Structure of Pyridoxamine-Pyruvate Aminotransferase from Mesorhizobium loti MAFF303099

Yu Yoshikane; Nana Yokochi; Masayuki Yamasaki; Kimihiko Mizutani; Kouhei Ohnishi; Bunzo Mikami; Hideyuki Hayashi; Toshiharu Yagi

Pyridoxamine-pyruvate aminotransferase (PPAT; EC 2.6.1.30) is a pyridoxal 5′-phosphate-independent aminotransferase and catalyzes reversible transamination between pyridoxamine and pyruvate to form pyridoxal and l-alanine. The crystal structure of PPAT from Mesorhizobium loti has been solved in space group P43212 and was refined to an R factor of 15.6% (Rfree = 20.6%) at 2.0Å resolution. In addition, the structures of PPAT in complexes with pyridoxamine, pyridoxal, and pyridoxyl-l-alanine have been refined to R factors of 15.6, 15.4, and 14.5% (Rfree = 18.6, 18.1, and 18.4%) at 1.7, 1.7, and 2.0Å resolution, respectively. PPAT is a homotetramer and each subunit is composed of a large N-terminal domain, consisting of seven β-sheets and eight α-helices, and a smaller C-terminal domain, consisting of three β-sheets and four α-helices. The substrate pyridoxal is bound through an aldimine linkage to Lys-197 in the active site. The α-carboxylate group of the substrate amino/keto acid is hydrogen-bonded to Arg-336 and Arg-345. The structures revealed that the bulky side chain of Glu-68 interfered with the binding of the phosphate moiety of pyridoxal 5′-phosphate and made PPAT specific to pyridoxal. The reaction mechanism of the enzyme is discussed based on the structures and kinetics results.


Bioscience, Biotechnology, and Biochemistry | 2005

Thermostability of Refolded Ovalbumin and S-Ovalbumin

Nobuyuki Takahashi; Maki Onda; Kaori Hayashi; Masayuki Yamasaki; Tomoyoshi Mita; Masaaki Hirose

Ovalbumin, a member of the serpin superfamily, is transformed into a thermostabilized form, S-ovalbumin, during storage of shell eggs or by an alkaline treatment of the isolated protein (ΔTm =8 °C). As structural characteristics of S-ovalbumin, three serine residues (Ser164, Ser236 and Ser320) take the D-amino acid residue configuration, while the conformational change from non-thermostabilized native ovalbumin is very small (Yamasaki, M., Takahashi, N., and Hirose, M., J. Biol. Chem., 278, 35524–35530 (2003)). To assess the role of the structural characteristics on protein thermostabilization, ovalbumin and S-ovalbumin were denatured to eliminate the conformational modulation effects and then refolded. The denatured ovalbumin and S-ovalbumin were correctly refolded into the original non-denatured forms with the corresponding differential thermostability. There was essentially no difference in the disulfide structures of the native and refolded forms of ovalbumin and S-ovalbumin. These data are consistent with the view that the configuration inversion, which is the only chemical modification directly detected in S-ovalbumin so far, plays a central role in ovalbumin thermostabilization. The rate of refolding of S-ovalbumin was greater than that of ovalbumin, indicating the participation, at least in part, of an increased folding rate for thermodynamic stabilization.


Journal of Bioscience and Bioengineering | 2004

Crystallographic Studies of Mycobacterium tuberculosis Polyphosphate/ATP-NAD Kinase Complexed with NAD

Shigetarou Mori; Masayuki Yamasaki; Yukie Maruyama; Keiko Momma; Shigeyuki Kawai; Wataru Hashimoto; Bunzo Mikami; Kousaku Murata

NAD kinase from Mycobacterium tuberculosis (Ppnk) uses ATP or inorganic polyphosphate [poly(P)]. Ppnk overexpressed in Escherichia coli was purified and crystallized in the presence of NAD. Preliminary X-ray analysis of the resultant crystal indicate that the crystal belongs to hexagonal space group P6(2)22 and is holo-Ppnk complexed with NAD.

Collaboration


Dive into the Masayuki Yamasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge