Massa J. Shoura
University of Texas at Dallas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Massa J. Shoura.
Biochemical Society Transactions | 2013
Stephen D. Levene; Stefan M. Giovan; Andreas Hanke; Massa J. Shoura
The formation of DNA loops is a ubiquitous theme in biological processes, including DNA replication, recombination and repair, and gene regulation. These loops are mediated by proteins bound at specific sites along the contour of a single DNA molecule, in some cases many thousands of base pairs apart. Loop formation incurs a thermodynamic cost that is a sensitive function of the length of looped DNA as well as the geometry and elastic properties of the DNA-bound protein. The free energy of DNA looping is logarithmically related to a generalization of the Jacobson-Stockmayer factor for DNA cyclization, termed the J factor. In the present article, we review the thermodynamic origins of this quantity, discuss how it is measured experimentally and connect the macroscopic interpretation of the J factor with a statistical-mechanical description of DNA looping and cyclization.
Nucleic Acids Research | 2012
Massa J. Shoura; Alexandre A. Vetcher; Stefan M. Giovan; Farah H. Bardai; Anusha Bharadwaj; Matthew R. Kesinger; Stephen D. Levene
The Cre-recombination system has become an important tool for genetic manipulation of higher organisms and a model for site-specific DNA-recombination mechanisms employed by the λ-Int superfamily of recombinases. We report a novel quantitative approach for characterizing the probability of DNA-loop formation in solution using time-dependent ensemble Förster resonance energy transfer measurements of intra- and inter-molecular Cre-recombination kinetics. Our method uses an innovative technique for incorporating multiple covalent modifications at specific sites in covalently closed DNA. Because the mechanism of Cre recombinase does not conform to a simple kinetic scheme, we employ numerical methods to extract rate constants for fundamental steps that pertain to Cre-mediated loop closure. Cre recombination does not require accessory proteins, DNA supercoiling or particular metal-ion cofactors and is thus a highly flexible system for quantitatively analyzing DNA-loop formation in vitro and in vivo.
Biophysical Journal | 2014
Massa J. Shoura; R. J. K. Udayana Ranatunga; Sarah A. Harris; Steven O. Nielsen; Stephen D. Levene
In Förster resonance energy transfer (FRET) experiments, extracting accurate structural information about macromolecules depends on knowing the positions and orientations of donor and acceptor fluorophores. Several approaches have been employed to reduce uncertainties in quantitative FRET distance measurements. Fluorophore-position distributions can be estimated by surface accessibility (SA) calculations, which compute the region of space explored by the fluorophore within a static macromolecular structure. However, SA models generally do not take fluorophore shape, dye transition-moment orientation, or dye-specific chemical interactions into account. We present a detailed molecular-dynamics (MD) treatment of fluorophore dynamics for an ATTO donor/acceptor dye pair and specifically consider as case studies dye-labeled protein-DNA intermediates in Cre site-specific recombination. We carried out MD simulations in both an aqueous solution and glycerol/water mixtures to assess the effects of experimental solvent systems on dye dynamics. Our results unequivocally show that MD simulations capture solvent effects and dye-dye interactions that can dramatically affect energy transfer efficiency. We also show that results from SA models and MD simulations strongly diverge in cases where donor and acceptor fluorophores are in close proximity. Although atomistic simulations are computationally more expensive than SA models, explicit MD studies are likely to give more realistic results in both homogeneous and mixed solvents. Our study underscores the model-dependent nature of FRET analyses, but also provides a starting point to develop more realistic in silico approaches for obtaining experimental ensemble and single-molecule FRET data.
G3: Genes, Genomes, Genetics | 2017
Massa J. Shoura; Idan Gabdank; Loren Hansen; Jason D. Merker; Jason Gotlib; Stephen D. Levene; Andrew Fire
Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples.
bioRxiv | 2017
Massa J. Shoura; Idan Gabdank; Loren Hansen; Jason D. Merker; Jason Gotlib; Stephen D. Levene; Andrew Fire
Investigations aimed at defining the 3-D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. High-throughput sequencing has only recently made extensive genomic mapping of eccDNA sequences possible and had yet to be applied using a rigorous approach that distinguishes ascertainment bias from true enrichment. Here, we define eccDNA distribution, utilizing a set of unbiased topology-dependent approaches for enrichment and characterization. We use parallel biophysical, enzymatic, and informatic approaches to obtain a comprehensive profiling of eccDNA in C. elegans and in three human cell types, where eccDNAs were previously uncharacterized. We also provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture in which endogenous genomic DNA circles are present in normal physiological DNA metabolism, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples.
Archive | 2014
Massa J. Shoura; Stephen D. Levene
The interior of a cell is a crowded and fluctuating environment where DNA and other biomolecules are both highly constrained and subject to many mechanical forces. The extensive compaction of DNA in living cells is a challenge to many critical biological functions. An evolutionary solution to this challenge may be the juxtaposition of cis-acting elements such that multimeric protein complexes simultaneously interact with two or more protein-binding sites. This mode of biological activity involves the formation of looped DNA structures, which, by themselves, are thermodynamically unfavorable. Our knowledge about the roles of DNA bending, twisting, and their respective energetics in DNA looping has come mainly from analyses of ligase-dependent DNA cyclization experiments, which are quantitatively described by the Jacobson–Stockmayer, or J, factor. In this chapter, we discuss a novel quantitative approach to measuring the probability of DNA loop formation in solution using ensemble Forster resonance energy transfer (FRET) measurements of intramolecular and intermolecular Cre-recombination kinetics. Because the mechanism of Cre recombinase does not conform to a simple kinetic scheme, we employ numerical methods to extract rate constants for fundamental steps that pertain to Cre-mediated loop closure.
Biophysical Journal | 2018
Stephen D. Levene; Massa J. Shoura; Andrew Fire
Biophysical Journal | 2018
Massa J. Shoura; Stephen D. Levene; Andrew Fire
Biophysical Journal | 2018
Riccardo Ziraldo; Massa J. Shoura; Stephen D. Levene
Biophysical Journal | 2014
Massa J. Shoura; Stephen D. Levene