Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimiliano Babbucci is active.

Publication


Featured researches published by Massimiliano Babbucci.


Genetics | 2006

A Genetic Linkage Map of the Hermaphrodite Teleost Fish Sparus aurata L.

Rafaella Franch; Bruno Louro; Matina Tsalavouta; Dimitris Chatziplis; Costas S. Tsigenopoulos; Elena Sarropoulou; Jenny Antonello; Andonis Magoulas; Constantinos C. Mylonas; Massimiliano Babbucci; Tomaso Patarnello; Deborah M. Power; Giorgos Kotoulas; Luca Bargelloni

The gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal.


Molecular Ecology | 2014

Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

Ilaria Milano; Massimiliano Babbucci; Alessia Cariani; Miroslava Atanassova; Dorte Bekkevold; Gary R. Carvalho; Montserrat Espiñeira; Fabio Fiorentino; Germana Garofalo; Audrey J. Geffen; Jakob Hemmer Hansen; Sarah J. Helyar; Einar Eg Nielsen; Rob Ogden; Tomaso Patarnello; Marco Stagioni; Fausto Tinti; Luca Bargelloni

Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome‐wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large‐ and fine‐scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (FCT range 0.275–0.705) and fine‐scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.


PLOS ONE | 2012

SNP Discovery Using Next Generation Transcriptomic Sequencing in Atlantic Herring (Clupea harengus)

Sarah J. Helyar; Morten T. Limborg; Dorte Bekkevold; Massimiliano Babbucci; Jeroen Van Houdt; Gregory E. Maes; Luca Bargelloni; Rasmus Oestergaard Nielsen; Martin I. Taylor; Rob Ogden; Alessia Cariani; Gary R. Carvalho; Frank Panitz

The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild.


BMC Genomics | 2011

The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects

Enrico Negrisolo; Massimiliano Babbucci; Tomaso Patarnello

BackgroundThe insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders.ResultsThe mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT-rich motifs.ConclusionsThe new genome shares many features with known neuropteran genomes but differs in its low A+T content. Comparative analysis of neuropterid mitochondrial genes showed that they experienced distinct evolutionary patterns. Both tRNA families and ribosomal RNAs show composite substitution pathways. The neuropterid mitochondrial genome is characterized by a complex evolutionary history.


PLOS ONE | 2011

Novel Tools for Conservation Genomics: Comparing Two High-Throughput Approaches for SNP Discovery in the Transcriptome of the European Hake

Ilaria Milano; Massimiliano Babbucci; Frank Panitz; Rob Ogden; Rasmus Oestergaard Nielsen; Martin I. Taylor; Sarah J. Helyar; Gary R. Carvalho; Montserrat Espiñeira; Miroslava Atanassova; Fausto Tinti; Gregory E. Maes; Tomaso Patarnello; Luca Bargelloni

The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).


Genome Biology and Evolution | 2014

Is It an Ant or a Butterfly? Convergent Evolution in the Mitochondrial Gene Order of Hymenoptera and Lepidoptera

Massimiliano Babbucci; Andrea Cristina Basso; A. Scupola; Tomaso Patarnello; Enrico Negrisolo

Insect mitochondrial genomes (mtDNA) are usually double helical and circular molecules containing 37 genes that are encoded on both strands. The arrangement of the genes is not constant for all species, and produces distinct gene orders (GOs) that have proven to be diagnostic in defining clades at different taxonomic levels. In general, it is believed that distinct taxa have a very low chance of sharing identically arranged GOs. However, examples of identical, homoplastic local rearrangements occurring in distinct taxa do exist. In this study, we sequenced the complete mtDNAs of the ants Formica fusca and Myrmica scabrinodis (Formicidae, Hymenoptera) and compared their GOs with those of other Insecta. The GO of F. fusca was found to be identical to the GO of Dytrisia (the largest clade of Lepidoptera). This finding is the first documented case of an identical GO shared by distinct groups of Insecta, and it is the oldest known event of GO convergent evolution in animals. Both Hymenoptera and Lepidoptera acquired this GO early in their evolution. Using a phylogenetic approach combined with new bioinformatic tools, the chronological order of the evolutionary events that produced the diversity of the hymenopteran GOs was determined. Additionally, new local homoplastic rearrangements shared by distinct groups of insects were identified. Our study showed that local and global homoplasies affecting the insect GOs are more widespread than previously thought. Homoplastic GOs can still be useful for characterizing the various clades, provided that they are appropriately considered in a phylogenetic and taxonomic context.


Molecular Phylogenetics and Evolution | 2010

Population structure, demographic history, and selective processes: Contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787)

Massimiliano Babbucci; Simona Buccoli; Angelo Cau; Rita Cannas; Raquel Goñi; David Díaz Díaz; Stefania Marcato; Lorenzo Zane; Tomaso Patarnello

The European spiny lobster Palinurus elephas (Fabricius, 1787) is an ecologically and economically important species inhabiting a wide geographic range that extends from the North-east Atlantic and Azores to the Eastern Mediterranean. We investigated the population structure and evolutionary history of this species by both mitochondrial and microsatellite markers. Ten population samples covering a large part of the species distribution range (three samples from the Atlantic Ocean and seven from the Mediterranean Sea) were analyzed for a portion of the mitochondrial control region and seven polymorphic microsatellite loci. Both markers rejected the hypothesis of panmixia identifying two differentiated gene pools. The control region clearly distinguished the Atlantic and Mediterranean populations in two genetically separated groups. Microsatellites, also revealed two groups roughly associated to the Atlantic-Mediterranean separation, however, the Azores sample did not conform to this geographic scheme. Discrepancy between mitochondrial and nuclear markers emerged also when reconstructing the history of the species. Neutrality tests of the mitochondrial sequences indicated a departure from mutation-drift equilibrium that, combined to the mismatch analysis, pointed toward a sudden population expansion in both Atlantic and Mediterranean gene pools. Unexpectedly, microsatellites did not identify any signal of population expansion neither in the Atlantic pool nor in the Mediterranean one.


BMC Genomics | 2014

Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray

Rebeca Moreira; Massimo Milan; Pablo Balseiro; Alejandro Romero; Massimiliano Babbucci; Antonio Figueras; Luca Bargelloni; Beatriz Novoa

BackgroundThe Manila clam (Ruditapes philippinarum) is a cultured bivalve with worldwide commercial importance, and diseases cause high economic losses. For this reason, interest in the immune genes in this species has recently increased. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application to study the gene transcription profiles of hemocytes from clams infected with V. alginolyticus through a time course.ResultsThe complete set of sequences from R. philippinarum available in the public databases and the hemocyte sequences enriched in immune transcripts were assembled successfully. A total of 12,156 annotated sequences were used to construct the 8 ×15 k oligo-microarray. The microarray experiments yielded a total of 579 differentially expressed transcripts. Using the gene expression results, the associated Gene Ontology terms and the enrichment analysis, we found different response mechanisms throughout the experiment. Genes related to signaling, transcription and apoptosis, such as IL-17D, NF-κB or calmodulin, were typically expressed as early as 3 hours post-challenge (hpc), while characteristic immune genes, such as PGRPs, FREPs and defense proteins appeared later at 8 hpc. This immune-triggering response could have affected a high number of processes that seemed to be activated 24 hpc to overcome the Vibrio challenge, including the expression of many cytoskeleton molecules, which is indicative of the active movement of hemocytes. In fact functional studies showed an increment in apoptosis, necrosis or cell migration after the infection. Finally, 72 hpc, activity returned to normal levels, and more than 50% of the genes were downregulated in a negative feedback of all of the previously active processes.ConclusionsUsing a new version of the R. philippinarum oligo-microarray, a putative timing for the response against a Vibrio infection was established. The key point to overcome the challenge seemed to be 8 hours after the challenge, when we detected immune functions that could lead to the destruction of the pathogen and the activation of a wide variety of processes related to homeostasis and defense. These results highlight the importance of a fast response in bivalves and the effectiveness of their innate immune system.


Marine Genomics | 2016

Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares)

Carlo Pecoraro; Massimiliano Babbucci; Adriana Villamor; Rafaella Franch; Chiara Papetti; Bruno Leroy; Sofía Ortega-García; Jeff Muir; Jay R. Rooker; Freddy Arocha; Hilario Murua; Iker Zudaire; Emmanuel Chassot; Nathalie Bodin; Fausto Tinti; Luca Bargelloni; Alessia Cariani

Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential.


Scientific Reports | 2017

The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

Andrea Cristina Basso; Massimiliano Babbucci; Marianna Pauletto; Emilio Riginella; Tomaso Patarnello; Enrico Negrisolo

We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both α- and β-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the β-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis.

Collaboration


Dive into the Massimiliano Babbucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Ogden

Royal Zoological Society of Scotland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorte Bekkevold

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge