Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimiliano De Paola is active.

Publication


Featured researches published by Massimiliano De Paola.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin.

Michael Brines; Nimesh S. A. Patel; Pia Villa; Courtenay Brines; Tiziana Mennini; Massimiliano De Paola; Zübeyde Erbayraktar; Serhat Erbayraktar; Bruno Sepodes; Christoph Thiemermann; Pietro Ghezzi; Michael A. Yamin; Carla Hand; Qiao wen Xie; Thomas Coleman; Anthony Cerami

Erythropoietin (EPO), a member of the type 1 cytokine superfamily, plays a critical hormonal role regulating erythrocyte production as well as a paracrine/autocrine role in which locally produced EPO protects a wide variety of tissues from diverse injuries. Significantly, these functions are mediated by distinct receptors: hematopoiesis via the EPO receptor homodimer and tissue protection via a heterocomplex composed of the EPO receptor and CD131, the β common receptor. In the present work, we have delimited tissue-protective domains within EPO to short peptide sequences. We demonstrate that helix B (amino acid residues 58–82) of EPO, which faces the aqueous medium when EPO is bound to the receptor homodimer, is both neuroprotective in vitro and tissue protective in vivo in a variety of models, including ischemic stroke, diabetes-induced retinal edema, and peripheral nerve trauma. Remarkably, an 11-aa peptide composed of adjacent amino acids forming the aqueous face of helix B is also tissue protective, as confirmed by its therapeutic benefit in models of ischemic stroke and renal ischemia–reperfusion. Further, this peptide simulating the aqueous surface of helix B also exhibits EPOs trophic effects by accelerating wound healing and augmenting cognitive function in rodents. As anticipated, neither helix B nor the 11-aa peptide is erythropoietic in vitro or in vivo. Thus, the tissue-protective activities of EPO are mimicked by small, nonerythropoietic peptides that simulate a portion of EPOs three-dimensional structure.


ACS Nano | 2013

Selective Nanovector Mediated Treatment of Activated Proinflammatory Microglia/Macrophages in Spinal Cord Injury

Simonetta Papa; Filippo Rossi; Raffaele Ferrari; Alessandro Mariani; Massimiliano De Paola; Ilaria Caron; Fabio Fiordaliso; Cinzia Bisighini; Eliana Sammali; Claudio Colombo; Marco Gobbi; Mara Canovi; Jacopo Lucchetti; Marco Peviani; Massimo Morbidelli; Gianluigi Forloni; Giuseppe Perale; Davide Moscatelli; Pietro Veglianese

Much evidence shows that acute and chronic inflammation in spinal cord injury (SCI), characterized by immune cell infiltration and release of inflammatory mediators, is implicated in development of the secondary injury phase that occurs after spinal cord trauma and in the worsening of damage. Activation of microglia/macrophages and the associated inflammatory response appears to be a self-propelling mechanism that leads to progressive neurodegeneration and development of persisting pain state. Recent advances in polymer science have provided a huge amount of innovations leading to increased interest for polymeric nanoparticles (NPs) as drug delivery tools to treat SCI. In this study, we tested and evaluated in vitro and in vivo a new drug delivery nanocarrier: minocycline loaded in NPs composed by a polymer based on poly-ε-caprolactone and polyethylene glycol. These NPs are able to selectively target and modulate, specifically, the activated proinflammatory microglia/macrophages in subacute progression of the secondary injury in SCI mouse model. After minocycline-NPs treatment, we demonstrate a reduced activation and proliferation of microglia/macrophages around the lesion site and a reduction of cells with round shape phagocytic-like phenotype in favor of a more arborized resting-like phenotype with low CD68 staining. Treatment here proposed limits, up to 15 days tested, the proinflammatory stimulus associated with microglia/macrophage activation. This was demonstrated by reduced expression of proinflammatory cytokine IL-6 and persistent reduced expression of CD68 in traumatized site. The nanocarrier drug delivery tool developed here shows potential advantages over the conventionally administered anti-inflammatory therapy, maximizing therapeutic efficiency and reducing side effects.


Journal of Controlled Release | 2014

Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury

Simonetta Papa; Raffaele Ferrari; Massimiliano De Paola; Filippo Rossi; Alessandro Mariani; Ilaria Caron; Eliana Sammali; Marco Peviani; Valentina Dell'Oro; Claudio Colombo; Massimo Morbidelli; Gianluigi Forloni; Giuseppe Perale; Davide Moscatelli; Pietro Veglianese

The possibility to control the fate of the cells responsible for secondary mechanisms following spinal cord injury (SCI) is one of the most relevant challenges to reduce the post traumatic degeneration of the spinal cord. In particular, microglia/macrophages associated inflammation appears to be a self-propelling mechanism which leads to progressive neurodegeneration and development of persisting pain state. In this study we analyzed the interactions between poly(methyl methacrylate) nanoparticles (PMMA-NPs) and microglia/macrophages in vitro and in vivo, characterizing the features that influence their internalization and ability to deliver drugs. The uptake mechanisms of PMMA-NPs were in-depth investigated, together with their possible toxic effects on microglia/macrophages. In addition, the possibility to deliver a mimetic drug within microglia/macrophages was characterized in vitro and in vivo. Drug-loaded polymeric NPs resulted to be a promising tool for the selective administration of pharmacological compounds in activated microglia/macrophages and thus potentially able to counteract relevant secondary inflammatory events in SCI.


Molecular Medicine | 2012

Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration.

Massimiliano De Paola; Alessandro Mariani; Paolo Bigini; Marco Peviani; Giovanni Ferrara; Monica Molteni; Sabrina Gemma; Pietro Veglianese; Valeria Castellaneta; Valentina Boldrin; Carlo Rossetti; Chiara Chiabrando; Gianluigi Forloni; Tiziana Mennini; Roberto Fanelli

Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivosettings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteriaderived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases.


Experimental Neurology | 2006

Riluzole, unlike the AMPA antagonist RPR119990, reduces motor impairment and partially prevents motoneuron death in the wobbler mouse, a model of neurodegenerative disease

Elena Fumagalli; Paolo Bigini; Sara Barbera; Massimiliano De Paola; Tiziana Mennini

The wobbler mouse is one of the most useful models of motoneuron degeneration, characterized by selective motoneuronal death in the cervical spinal cord. We carried out two parallel studies in wobbler mice, comparing the anti-glutamatergic drug riluzole and the AMPA receptor antagonist RPR119990. Mice were treated with 40 mg/kg/day of riluzole or with 3 mg/kg/day of RPR119990 from the 4th to the 12th week of age. Here, we show that chronic treatment with riluzole improves motor behavior, prevents biceps muscle atrophy and decreases the amount of motoneuron loss in treated wobbler mice. Chronic treatment with the AMPA antagonist RPR119990 is ineffective in improving motor impairment, in reducing motoneuronal loss and muscular atrophy in treated mice. These results, together with the unchanged immunostaining for the AMPA receptor subunit GluR2 in wobbler mice, suggest that AMPA receptor-mediated injury is unlikely to be involved in neurodegeneration in wobbler disease, and that the protective effect of riluzole in wobbler mice seems to be independent of its anti-glutamatergic activity, as suggested in other models of neurodegeneration. Immunostaining of cervical spinal cord sections shows that in riluzole-treated wobbler mice BDNF expression is significantly increased in motoneurons with no changes in the high-affinity receptor Trk-B. Our data confirm that riluzole has beneficial effects in wobbler mice, and suggest that these effects could be associated to the increased levels of the neurotrophic and neuroprotective factor BDNF.


Biomaterials | 2016

Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury.

Simonetta Papa; Ilaria Caron; Eugenio Erba; Nicolò Panini; Massimiliano De Paola; Alessandro Mariani; Claudio Colombo; Raffaele Ferrari; Diego Pozzer; Elisa R. Zanier; Francesca Pischiutta; Jacopo Lucchetti; Andrea Bassi; Gianluca Valentini; Giulio Alfredo Simonutti; Filippo Rossi; Davide Moscatelli; Gianluigi Forloni; Pietro Veglianese

Many efforts have been performed in order to understand the role of recruited macrophages in the progression of spinal cord injury (SCI). Different studies revealed a pleiotropic effect played by these cells associated to distinct phenotypes (M1 and M2), showing a predictable spatial and temporal distribution in the injured site after SCI. Differently, the role of activated microglia in injury progression has been poorly investigated, mainly because of the challenges to target and selectively modulate them in situ. A delivery nanovector tool (poly-ε-caprolactone-based nanoparticles) able to selectively treat/target microglia has been developed and used here to clarify the temporal and spatial involvement of the pro-inflammatory response associated to microglial cells in SCI. We show that a treatment with nanoparticles loaded with minocycline, the latter a well-known anti-inflammatory drug, when administered acutely in a SCI mouse model is able to efficiently modulate the resident microglial cells reducing the pro-inflammatory response, maintaining a pro-regenerative milieu and ameliorating the behavioral outcome up to 63 days post injury. Furthermore, by using this selective delivery tool we demonstrate a mechanistic link between early microglia activation and M1 macrophages recruitment to the injured site via CCL2 chemokine, revealing a detrimental contribution of pro-inflammatory macrophages to injury progression after SCI.


Neuroimmunomodulation | 2007

Chemokine MIP-2/CXCL2, Acting on CXCR2, Induces Motor Neuron Death in Primary Cultures

Massimiliano De Paola; Pasquale Buanne; Leda Biordi; Riccardo Bertini; Pietro Ghezzi; Tiziana Mennini

Objectives: Chemokines are implicated in many diseases of the central nervous system (CNS). Although their primary role is to induce inflammation through the recruitment of leukocytes by their chemotactic activity, they may also have direct effects on neuronal cells. We evaluated the expression of CXCR1 and CXCR2 and investigated the effect of CXCR2 activation by the agonist MIP-2 (CXCL2) on primary cultured motor neurons. To specifically assess the role of CXCR2 in the neurotoxicity induced by MIP-2, we used the CXCR1/2 inhibitor reparixin and studied the effect of the chemokine on motor neuron cultures from CXCR2-deficient mice. Methods: Primary motor neurons prepared from rat or mouse embryos were treated with MIP-2 and reparixin. Motor neuron viability and receptor expression were assessed by immunocytochemical techniques. Results: Rat primary motor neurons expressed CXCR2 receptors and recombinant rat MIP-2 induced dose-dependent neurotoxicity. This neurotoxicity was counteracted by reparixin, a specific CXCR1/2 inhibitor, and was not observed in motor neurons from CXCR2-deficient mice. Conclusions: CXCR2 activation might directly contribute to motor neuron degeneration. Thus, chemokines acting on CXCR2, including IL-8, may have direct pathogenic effects in CNS diseases, independent of the induction of leukocyte migration.


Pharmacological Research | 2016

Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model

Massimiliano De Paola; Stefania E. Sestito; Alessandro Mariani; Christian Memo; Roberto Fanelli; Mattia Freschi; Caterina Bendotti; Valentina Calabrese; Francesco Peri

Increasing evidence indicates that inflammatory responses could play a critical role in the pathogenesis of motor neuron injury in amyotrophic lateral sclerosis (ALS). Recent findings have underlined the role of Toll-like receptors (TLRs) and the involvement of both the innate and adaptive immune responses in ALS pathogenesis. In particular, abnormal TLR4 signaling in pro-inflammatory microglia cells has been related to motoneuron degeneration leading to ALS. In this study the effect of small molecule TLR4 antagonists on in vitro ALS models has been investigated. Two different types of synthetic glycolipids and the phenol fraction extracted from commercial extra-virgin olive oil (EVOO) were selected since they efficiently inhibit TLR4 stimulus in HEK cells by interacting with the TLR4·MD-2 complex and CD14 co-receptor. Here, TLR4 antagonists efficiently protected motoneurons from LPS-induced lethality in spinal cord cultures, and inhibited the interleukine-1β production by LPS-stimulated microglia. In motoneurons/glia cocultures obtained from wild type or SOD1 G93A mice, motoneuron death induced by SOD1mut glia was counteracted by TLR4 antagonists. The release of nitric oxide by LPS treatment or SOD1mut glia was also inhibited by EVOO, suggesting that the action of this natural extract could be mainly related to the modulation of this inflammatory mediator.


Journal of Proteomics | 2012

Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls

Laura Brunelli; Marta Llansola; Vicente Felipo; Roberta Campagna; Luisa Airoldi; Massimiliano De Paola; Roberto Fanelli; Alessandro Mariani; Marco Mazzoletti; Roberta Pastorelli

Recent studies showed that food-contaminant non-dioxin-like polychlorinated biphenyls (NDL-PCBs) congeners (PCB52, PCB138, PCB180) have neurotoxic potential, but the cellular and molecular mechanisms underlying neuronal damage are not entirely known. The aim of this study was to assess whether in-vitro exposure to NDL-PCBs may alter the proteome profile of primary cerebellar neurons in order to expand our knowledge on NDL-PCBs neurotoxicity. Comparison of proteome from unexposed and exposed rat cerebellar neurons was performed using state-of-the-art label-free semi-quantitative mass-spectrometry method. We observed significant changes in the abundance of several proteins, that fall into two main classes: (i) novel targets for both PCB138 and 180, mediating the dysregulation of CREB pathways and ubiquitin-proteasome system; (ii) different congeners-specific targets (alpha-actinin-1 for PCB138; microtubule-associated-protein-2 for PCB180) that might lead to similar deleterious consequences on neurons cytoskeleton organization. Interference of the PCB congeners with synaptic formation was supported by the increased expression of pre- and post-synaptic proteins quantified by western blot and immunocytochemistry. Expression alteration of synaptic markers was confirmed in the cerebellum of rats developmentally exposed to these congeners, suggesting an adaptive response to neurodevelopmental toxicity on brain structures. As such, our work is expected to lead to new insights into the mechanisms of NDL-PCBs neurotoxicity.


Experimental Neurology | 2010

Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake.

Valentina Diana; Arianna Ottolina; Francesca Botti; Elena Fumagalli; Eleonora Calcagno; Massimiliano De Paola; Alfredo Cagnotto; Gloria Invernici; Eugenio Parati; Daniela Curti; Tiziana Mennini

In the present study, we investigated whether cultured astrocytes derived from adult neural precursor cells (NPCs) obtained from the subventricular zone (SVZ) of wobbler mice display metabolic traits of the wobbler astrocytes in situ and in primary culture. We also utilized NPC-derived astrocytes as a tool to investigate the involvement of astrocytes in the molecular mechanism of MND focusing on the possible alteration of glutamate reuptake since excitotoxicity glutamate-mediated may be a contributory pathway. NPC-derived wobbler astrocytes are characterized by high immunoreactivity for GFAP, significant decrease of glutamate uptake and reduced immunoreactivity for glutamate transporters GLT1 and GLAST. Spinal cord motor neurons obtained from healthy mouse embryos, when co-cultured with wobbler NPC-derived astrocytes, show reduced viability and morphologic alterations. These suffering motor neurons are caspase-7 positive, and treatment with anti-apoptotic drug V5 increases cell survival. Physical contact with wobbler astrocytes is not essential because purified motor neurons display reduced survival also when treated with the medium conditioned by wobbler NPC-derived astrocytes. Toxic levels of glutamate were revealed by HPLC assay in the extracellular medium of wobbler NPC-derived astrocytes, whereas the level of intracellular glutamate is reduced if compared with controls. Moreover, glutamate receptor antagonists are able to enhance motor neuron survival. Therefore, our results demonstrate that astrocytes derived from wobbler neural precursor cells display impaired glutamate homeostasis that may play a crucial role in motor neuron degeneration. Finally, the cultured astrocytes derived from NPCs of adult mice may offer a useful alternative in vitro model to study the molecular mechanisms involved in neurodegeneration.

Collaboration


Dive into the Massimiliano De Paola's collaboration.

Top Co-Authors

Avatar

Tiziana Mennini

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Pietro Veglianese

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Paolo Bigini

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Simonetta Papa

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluigi Forloni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Elena Fumagalli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Ilaria Caron

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Leda Biordi

University of L'Aquila

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge