Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimiliano Magro is active.

Publication


Featured researches published by Massimiliano Magro.


Biosensors and Bioelectronics | 2013

A glucose biosensor based on surface active maghemite nanoparticles.

Davide Baratella; Massimiliano Magro; Giulietta Sinigaglia; Radek Zboril; Gabriella Salviulo; Fabio Vianello

A simple carbon paste (CP) electrode, modified with novel maghemite (γ-Fe2O3) nanoparticles, called SAMNs (surface active maghemite nanoparticles) and characterized by a mean diameter of about 10nm, has been developed. The electrode catalyzes the electro-reduction of hydrogen peroxide at low applied potentials (-0.1 V vs SCE). In order to improve the electrocatalytic properties of the modified electrode an ionic liquid, namely 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), was introduced. At -0.1 V, the sensitivity of the SAMN-BMIM-PF6-CP electrode was 206.51 nA μM(-1)cm(-2), with a detection limit (S/N=3) of 0.8 μM, in the 0-1.5mM H2O2 concentration range. Furthermore, glucose oxidase was immobilized on the surface of maghemite nanoparticles as a monomolecular layer, by a bridge constituted of rhodamine B isothiocyanate, leading to a fluorescent, magnetic drivable nanocatalyst, containing 10 ± 2 enzyme molecules per nanoparticle. The resulting enzyme electrode presents a linear calibration curve toward glucose in solution in the concentration range of 0-1.5mM glucose, characterized by a sensitivity of 45.85 nA μM(-1)cm(-2) and a detection limit (S/N=3) of 0.9 μM. The storage stability of the system was evaluated and a half-life of 2 months was calculated, if the electrode is stored at 4°C in buffer. The present work demonstrates the feasibility of these surface active maghemite nanoparticles as efficient hydrogen peroxide electro-catalyst, which can be easily coupled to hydrogen peroxide producing enzymes in order to develop oxidase based reagentless biosensor devices.


Acta Biomaterialia | 2012

Charge binding of rhodamine derivative to OH− stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors

Massimiliano Magro; Giulietta Sinigaglia; Luca Nodari; Jiri Tucek; Katerina Polakova; Zdenek Marusak; Sara Cardillo; Gabriella Salviulo; Umberto Russo; Roberto Stevanato; Radek Zboril; Fabio Vianello

Superparamagnetic nanoparticles (20-40 nm) of maghemite, γ-Fe(2)O(3), with well-defined stoichiometric structure, are synthesized by the borohydride reduction of ferric chloride at an elevated temperature (100°C) followed by thermal treatment of the reaction product. Prepared maghemite nanoparticles reveal excellent colloidal stability for a long time without the necessity for any additional surface modification. These colloidal features are due to surface stabilizing OH(-) groups, which act as charge barriers preventing a particle aggregation and enabling a reversible binding of various oppositely charged organic substances. Such binding with rhodamine B isothiocyanate results in the fluorescent magnetic nanocarrier providing, at the same time, a spacer arm for covalent immobilization of other biosubstances including enzymes. In this work, we exploit this general applicability of the developed nanocarrier for covalent immobilization of glucose oxidase. This is the first reported example of magnetically drivable fluorescent nanocatalyst. The immobilized enzyme creates a 3-5 nm thick layer on the nanoparticle surface as proved by high-resolution transmission electron microscopy. This layer corresponds to 10 enzyme molecules, which are bound to the nanoparticle surface as found by the fluorimetric determination of flavin adenine dinucleotide. The developed magnetic fluorescent nanocatalyst, showing a rate constant of 32.7s(-1) toward glucose oxidation, can be used as a biosensor in various biochemical, biotechnological, and food chemistry applications. The presence of the nanocatalyst can be simply monitored by its fluorescence; moreover, it can be easily separated from the solution by an external magnetic field and repeatedly used without a loss of catalytic efficiency.


Langmuir | 2012

Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification.

Massimiliano Magro; Adele Faralli; Davide Baratella; Ilenia Bertipaglia; Sara Giannetti; Gabriella Salviulo; Radek Zboril; Fabio Vianello

We report on the surface characterization, functionalization, and application of stable water suspensions of novel surface active maghemite nanoparticles (SAMNs), characterized by a diameter of 11 ± 2 nm and possessing peculiar colloidal properties and surface interactions. These features permitted the acquisition of titration curves and aqueous UV-vis spectra and suggested a role played by surface under-coordinated iron atoms. This new class of nanoparticles was obtained through an easy, inexpensive, one-step, green procedure and functionalized with ligands of high biotechnological interest, such as biotin and avidin, by simple incubation in aqueous solution. Bound avidin was determined by measuring the disappearance of free avidin absorbance at 280 nm, as a function of increasing nanoparticle concentration, showing the presence of 10 ± 3 avidin molecules per nanoparticle. The biological activity of the SAMN@avidin complex was evaluated and the number of available biotin binding sites was determined, using biotinyl-fluorescein as a probe, showing that each bound avidin molecule is able to bind 2.8 ± 0.8 biotin molecules, confirming the maintenance of biological activity and excellent binding capacity of the SAMN@avidin complex. Furthermore a Langmuir isotherm model was used to describe the biomolecule specific monolayer adsorption onto the particle surface, and in the case of avidin, the maximum adsorption capacity was 100 ± 27 μg avidin/mg SAMN, whereas the binding constant is 45.18 μL μg(-1). The SAMN@avidin complex was characterized by UV-vis spectroscopy, quartz crystal microbalance, FTIR spectroscopy, and transmission electron microscopy. Finally, SAMN@avidin was applied for the large scale purification of recombinant biotinylated human sarco/endoplasmic reticulum Ca(2+)-ATPase (hSERCA-2a), expressed by Saccharomyces cerevisiae. The protein was magnetically purified, and about 500 μg of a 70% pure hSERCA-2a were recovered from 4 L of yeast culture, with a purification yield of 64%.


International Journal of Nanomedicine | 2012

Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles

Giulietta Sinigaglia; Massimiliano Magro; Giovanni Miotto; Sara Cardillo; Enzo Agostinelli; Radek Zboril; Eris Bidollari; Fabio Vianello

Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN-RITC-BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g(-1) nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN-RITC-BSAO complex, characterized by a specific activity of 0.81 IU g(-1,) could be used in the presence of polyamines to create a fluorescent magnetically drivable H(2)O(2) and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.


Biosensors and Bioelectronics | 2014

Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst.

Massimiliano Magro; Davide Baratella; Gabriella Salviulo; Katerina Polakova; Giorgio Zoppellaro; Jiri Tucek; Josef Kašlík; Radek Zboril; Fabio Vianello

A novel core-shell nanomaterial based on prussian blue (PB) coating on peculiar surface active maghemite nanoparticles (SAMNs), was developed. The synthetic process involves the direct crystallization of Fe(II)(CN)6(4-) onto the surface of SAMNs by simple incubation in water at controlled pH, demonstrating the presence of under-coordinated Fe(III) on nanoparticle surface. The coating reaction occurs in a narrow pH range and the synthetic procedure was optimized. The resulting SAMN@PB hybrid nanostructures were characterized by transmission and scanning electron microscopy, Mössbauer, UV-vis and FTIR spectroscopy and X-ray powder diffraction. The nanomaterial, characterized by high stability in alkaline media, behave as excellent electro-catalyst for hydrogen peroxide reduction. The stability of SAMN@PB hybrid has been investigated as a function of pH, showing excellent stability up to pH 9.0 and demonstrating the feasibility of SAMNs, superficially derivatized with prussian blue, to produce an efficient and extremely stable nanostructured material. This maghemite supported nanostructured prussian blue was applied to develop a sensor, based on a simple carbon paste electrode, which was able to catalyze the electro-reduction of hydrogen peroxide, in aqueous solutions, buffered at pH 7.0, at low applied potentials (0.0 V vs. SCE).


Chemistry: A European Journal | 2014

A Magnetically Drivable Nanovehicle for Curcumin with Antioxidant Capacity and MRI Relaxation Properties

Massimiliano Magro; Renê Arnoux da Silva Campos; Davide Baratella; Giuseppina Pace Pereira Lima; Katerina Hola; Clemens Divoky; Rudolf Stollberger; Ondrej Malina; Claudia Aparicio; Giorgio Zoppellaro; Radek Zbořil; Fabio Vianello

Curcumin possesses wide-ranging anti-inflammatory and anti-cancer properties and its biological activity can be linked to its potent antioxidant capacity. Superparamagnetic maghemite (γ-Fe2 O3 ), called surface-active maghemite nanoparticles (SAMNs) were surface-modified with curcumin molecules, due to the presence of under-coordinated Fe(III) atoms on the nanoparticle surface. The so-obtained curcumin-modified SAMNs (SAMN@curcumin) had a mean size of 13±4 nm. SAMN@curcumin was characterized by transmission and scanning electron microscopy, UV/Vis, FTIR, and Mössbauer spectroscopy, X-ray powder diffraction, bulk susceptibility (SQUID), and relaxometry measurements (MRI imaging). The high negative contrast proclivity of SAMN@curcumin to act as potential contrast agent in MRI screenings was also tested. Moreover, the redox properties of bound curcumin were probed by electrochemistry. SAMN@curcumin was studied in the presence of different electroactive molecules, namely hydroquinone, NADH and ferrocyanide, to assess its redox behavior. Finally, SAMN@curcumin was electrochemically probed in the presence of hydrogen peroxide, demonstrating the stability and reactivity of bound curcumin.


International Journal of Nanomedicine | 2014

Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist – an initial in vitro study

Josef Skopalik; Katerina Polakova; Marketa Havrdova; Ivan Justan; Massimiliano Magro; David Milde; Lucia Knopfová; Jan Šmarda; Helena Poláková; Eva Gabrielová; Fabio Vianello; Jaroslav Michálek; Radek Zboril

Objective Cell therapies have emerged as a promising approach in medicine. The basis of each therapy is the injection of 1–100×106 cells with regenerative potential into some part of the body. Mesenchymal stromal cells (MSCs) are the most used cell type in the cell therapy nowadays, but no gold standard for the labeling of the MSCs for magnetic resonance imaging (MRI) is available yet. This work evaluates our newly synthesized uncoated superparamagnetic maghemite nanoparticles (surface-active maghemite nanoparticles – SAMNs) as an MRI contrast intracellular probe usable in a clinical 1.5 T MRI system. Methods MSCs from rat and human donors were isolated, and then incubated at different concentrations (10–200 μg/mL) of SAMN maghemite nanoparticles for 48 hours. Viability, proliferation, and nanoparticle uptake efficiency were tested (using fluorescence microscopy, xCELLigence analysis, atomic absorption spectroscopy, and advanced microscopy techniques). Migration capacity, cluster of differentiation markers, effect of nanoparticles on long-term viability, contrast properties in MRI, and cocultivation of labeled cells with myocytes were also studied. Results SAMNs do not affect MSC viability if the concentration does not exceed 100 μg ferumoxide/mL, and this concentration does not alter their cell phenotype and long-term proliferation profile. After 48 hours of incubation, MSCs labeled with SAMNs show more than double the amount of iron per cell compared to Resovist-labeled cells, which correlates well with the better contrast properties of the SAMN cell sample in T2-weighted MRI. SAMN-labeled MSCs display strong adherence and excellent elasticity in a beating myocyte culture for a minimum of 7 days. Conclusion Detailed in vitro tests and phantom tests on ex vivo tissue show that the new SAMNs are efficient MRI contrast agent probes with exclusive intracellular uptake and high biological safety.


International Journal of Food Microbiology | 2015

A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens

Nadia Andrea Andreani; Lisa Carraro; Maria Elena Martino; Marco Fondi; Luca Fasolato; Giovanni Miotto; Massimiliano Magro; Fabio Vianello

Pseudomonas fluorescens is a well-known food spoiler, able to cause serious economic losses in the food industry due to its ability to produce many extracellular, and often thermostable, compounds. The most outstanding spoilage events involving P. fluorescens were blue discoloration of several food stuffs, mainly dairy products. The bacteria involved in such high-profile cases have been identified as belonging to a clearly distinct phylogenetic cluster of the P. fluorescens group. Although the blue pigment has recently been investigated in several studies, the biosynthetic pathway leading to the pigment formation, as well as its chemical nature, remain challenging and unsolved points. In the present paper, genomic and transcriptomic data of 4 P. fluorescens strains (2 blue-pigmenting strains and 2 non-pigmenting strains) were analyzed to evaluate the presence and the expression of blue strain-specific genes. In particular, the pangenome analysis showed the presence in the blue-pigmenting strains of two copies of genes involved in the tryptophan biosynthesis pathway (including trpABCDF). The global expression profiling of blue-pigmenting strains versus non-pigmenting strains showed a general up-regulation of genes involved in iron uptake and a down-regulation of genes involved in primary metabolism. Chromogenic reaction of the blue-pigmenting bacterial cells with Kovacs reagent indicated an indole-derivative as the precursor of the blue pigment. Finally, solubility tests and MALDI-TOF mass spectrometry analysis of the isolated pigment suggested that its molecular structure is very probably a hydrophobic indigo analog.


Colloids and Surfaces B: Biointerfaces | 2016

Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis.

Giovanni Miotto; Massimiliano Magro; Milo Terzo; Mattia Zaccarin; Laura Da Dalt; Emanuela Bonaiuto; Davide Baratella; Gianfranco Gabai; Fabio Vianello

Proteome modifications in a biological fluid can potentially indicate the occurrence of pathologies, even if the identification of a proteome fingerprint correlated to a specific disease represents a very difficult task. When a nanomaterial is introduced into a biological fluid, macromolecules compete to form a protein corona on the nanoparticle surface, and depending on the specific proteome, different patterns of proteins will form the final protein corona shell depending on their affinity for the nanoparticle surface. Novel surface active maghemite nanoparticles (SAMNs) display a remarkable selectivity toward protein corona formation, and they are able to concentrate proteins and peptides presenting high affinities for their surface even if they are present in very low amounts. Thus, SAMNs may confer visibility to hidden biomarkers correlated to the occurrence of a pathology. In the present report, SAMNs were introduced into milk samples from healthy cows and from animals affected by mastitis, and the selectively bound protein corona shell was easily analyzed and quantified by gel electrophoresis and characterized by mass spectrometry. Upon incubation in mastitic milk, SAMNs were able to selectively bind αs2-casein fragments containing the FALPQYLK sequence, as part of the larger casocidin-1 peptide with strong antibacterial activity, which were not present in healthy samples. Thus, SAMNs can be used as a future candidate for the rapid diagnosis of mastitis in bovine milk. The present report proposes protein competition for SAMN protein corona formation as a means of mirroring proteome modifications. Thus, the selected protein shell on the nanoparticles results in a fingerprint of the specific pathology.


Chemistry: A European Journal | 2016

Ternary Hybrid γ‐Fe2O3/CrVI/Amine Oxidase Nanostructure for Electrochemical Sensing: Application for Polyamine Detection in Tumor Tissue

Emanuela Bonaiuto; Massimiliano Magro; Davide Baratella; Petr Jakubec; Elisabetta Sconcerle; Milo Terzo; Giovanni Miotto; Alberto Macone; Enzo Agostinelli; S. Fasolato; Rina Venerando; Gabriella Salviulo; Ondrej Malina; Radek Zboril; Fabio Vianello

Dichromate binds to surface-active maghemite nanoparticles (SAMNs) to form a stable core-shell nanostructures (SAMN@Cr(VI) ). The hybrid was characterized by Mössbauer spectroscopy, high-angle annular dark-field imaging, electron energy-loss spectroscopy, and electrochemical techniques, which revealed a strong interaction of dichromate with the nanoparticle surface. Electrochemical characterization showed lower charge-transfer resistance, better electrochemical performance, and more reversible electrochemical behavior with respect to naked SAMNs. Moreover, SAMN@Cr(VI) is an excellent electrocatalyst for hydrogen peroxide reduction. Furthermore, an enzyme, namely, bovine serum amine oxidase (BSAO: EC 1.4.3.6), was immobilized on SAMN@Cr(VI) by self-assembly to give a ternary hybrid nanostructured catalyst for polyamine oxidation (SAMN@Cr(VI) -BSAO). SAMN@Cr(VI) -BSAO was applied for the development of a reagentless, fast, inexpensive, and interference-free polyamine biosensor, which was successfully exploited for the discrimination of tumorous tissue from healthy tissue in human crude liver extracts.

Collaboration


Dive into the Massimiliano Magro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enzo Agostinelli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge