Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimiliano Pacilio is active.

Publication


Featured researches published by Massimiliano Pacilio.


Physics in Medicine and Biology | 2012

A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions.

Nico Lanconelli; Massimiliano Pacilio; S. Lo Meo; Francesca Botta; A Di Dia; L A Torres Aroche; M A Coca Pérez; Marta Cremonesi

The increasing availability of SPECT/CT devices with advanced technology offers the opportunity for the accurate assessment of the radiation dose to the biological target volume during radionuclide therapy. Voxel dosimetry can be performed employing direct Monte Carlo radiation transport simulations, based on both morphological and functional images of the patient. On the other hand, for voxel dosimetry calculations the voxel S value method can be considered an easier approach than patient-specific Monte Carlo simulations, ensuring a good dosimetric accuracy at least for anatomic regions which are characterized by uniform density tissue. However, this approach has been limited because of the lack of tabulated S values for different voxel dimensions and radionuclides. The aim of this work is to provide a free dataset of values which can be used for voxel dosimetry in targeted radionuclide studies. Seven different radionuclides (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, 188Re), and 13 different voxel sizes (2.21, 2.33, 2.4, 3, 3.59, 3.9, 4, 4.42, 4.8, 5, 6, 6.8 and 9.28 mm) are considered. Voxel S values are calculated performing simulations of monochromatic photon and electron sources in two different homogeneous tissues (soft tissue and bone) with DOSXYZnrc code, and weighting the contributions on the basis of the radionuclide emission spectra. The outcomes are validated by comparison with Monte Carlo simulations obtained with other codes (PENELOPE and MCNP4c) performing direct simulation of the radionuclide emission spectra. The differences among the different Monte Carlo codes are of the order of a few per cent when considering the source voxel and the bremsstrahlung tail, whereas the highest differences are observed at a distance close to the maximum continuous slowing down approximation range of electrons. These discrepancies would negligibly affect dosimetric assessments. The dataset of voxel S values can be freely downloaded from the website www.medphys.it.


Medical Physics | 2009

Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations

Massimiliano Pacilio; N. Lanconelli; S. Lo Meo; M. Betti; L. Montani; L A Torres Aroche; M A Coca Pérez

Several updated Monte Carlo (MC) codes are available to perform calculations of voxel S values for radionuclide targeted therapy. The aim of this work is to analyze the differences in the calculations obtained by different MC codes and their impact on absorbed dose evaluations performed by voxel dosimetry. Voxel S values for monoenergetic sources (electrons and photons) and different radionuclides (90Y, 131I, and 188Re) were calculated. Simulations were performed in soft tissue. Three general-purpose MC codes were employed for simulating radiation transport: MCNP4C, EGSnrc, and GEANT4. The data published by the MIRD Committee in Pamphlet No. 17, obtained with the EGS4 MC code, were also included in the comparisons. The impact of the differences (in terms of voxel S values) among the MC codes was also studied by convolution calculations of the absorbed dose in a volume of interest. For uniform activity distribution of a given radionuclide, dose calculations were performed on spherical and elliptical volumes, varying the mass from 1 to 500 g. For simulations with monochromatic sources, differences for self-irradiation voxel S values were mostly confined within 10% for both photons and electrons, but with electron energy less than 500 keV, the voxel S values referred to the first neighbor voxels showed large differences (up to 130%, with respect to EGSnrc) among the updated MC codes. For radionuclide simulations, noticeable differences arose in voxel S values, especially in the bremsstrahlung tails, or when a high contribution from electrons with energy of less than 500 keV is involved. In particular, for 90Y the updated codes showed a remarkable divergence in the bremsstrahlung region (up to about 90% in terms of voxel S values) with respect to the EGS4 code. Further, variations were observed up to about 30%, for small source-target voxel distances, when low-energy electrons cover an important part of the emission spectrum of the radionuclide (in our case, for 131I). For 90Y and 188Re, the differences among the various codes have a negligible impact (within few percents) on convolution calculations of the absorbed dose; thus either one of the MC programs is suitable to produce voxel S values for radionuclide targeted therapy dosimetry. However, if a low-energy beta-emitting radionuclide is considered, these differences can affect also dose depositions at small source-target voxel distances, leading to more conspicuous variations (about 9% for 1311) when calculating the absorbed dose in the volume of interest.


Nuclear Physics B - Proceedings Supplements | 2003

Natural and CVD type diamond detectors as dosimeters in hadrontherapy applications

G.A.P. Cirrone; G. Cuttone; L. Rafaele; M.G. Sabini; C. De Angelis; S. Onori; Massimiliano Pacilio; M. Bucciolini; M. Bruzzi; S. Sciortino

Abstract Diamond is potentially a suitable material for use as radiation dosimeter; the wide band gap results in low dark currents and low sensitivity to visible light, the high carrier mobility can give rapid response, the very high density of strong bonds in the crystal structure make diamond very resistent to radiation damage; moreover it is tissue equivalent. The more recent advances in the synthesis of polycrystalline diamond by chemical vapour deposition (CVD) techniques have allowed the synthesis of material with electronic properties suitable for dosimetric application. In this paper we will report the results obtained in the study of the response of a natural diamond dosimeter and a CVD one irradiated with 62 AMeV proton beams to demonstrate their possible application in protontherapy.


Medical Physics | 2011

An innovative iterative thresholding algorithm for tumour segmentation and volumetric quantification on SPECT images: Monte Carlo-based methodology and validation

Massimiliano Pacilio; C Basile; Sergey Shcherbinin; Federica Caselli; G Ventroni; D Aragno; L Mango; E Santini

PURPOSE Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging play an important role in the segmentation of functioning parts of organs or tumours, but an accurate and reproducible delineation is still a challenging task. In this work, an innovative iterative thresholding method for tumour segmentation has been proposed and implemented for a SPECT system. This method, which is based on experimental threshold-volume calibrations, implements also the recovery coefficients (RC) of the imaging system, so it has been called recovering iterative thresholding method (RIThM). The possibility to employ Monte Carlo (MC) simulations for system calibration was also investigated. METHODS The RIThM is an iterative algorithm coded using MATLAB: after an initial rough estimate of the volume of interest, the following calculations are repeated: (i) the corresponding source-to-background ratio (SBR) is measured and corrected by means of the RC curve; (ii) the threshold corresponding to the amended SBR value and the volume estimate is then found using threshold-volume data; (iii) new volume estimate is obtained by image thresholding. The process goes on until convergence. The RIThM was implemented for an Infinia Hawkeye 4 (GE Healthcare) SPECT/CT system, using a Jaszczak phantom and several test objects. Two MC codes were tested to simulate the calibration images: SIMIND and SimSet. For validation, test images consisting of hot spheres and some anatomical structures of the Zubal head phantom were simulated with SIMIND code. Additional test objects (flasks and vials) were also imaged experimentally. Finally, the RIThM was applied to evaluate three cases of brain metastases and two cases of high grade gliomas. RESULTS Comparing experimental thresholds and those obtained by MC simulations, a maximum difference of about 4% was found, within the errors (+/- 2% and +/- 5%, for volumes > or = 5 ml or < 5 ml, respectively). Also for the RC data, the comparison showed differences (up to 8%) within the assigned error (+/- 6%). ANOVA test demonstrated that the calibration results (in terms of thresholds or RCs at various volumes) obtained by MC simulations were indistinguishable from those obtained experimentally. The accuracy in volume determination for the simulated hot spheres was between -9% and 15% in the range 4-270 ml, whereas for volumes less than 4 ml (in the range 1-3 ml) the difference increased abruptly reaching values greater than 100%. For the Zubal head phantom, errors ranged between 9% and 18%. For the experimental test images, the accuracy level was within +/- 10%, for volumes in the range 20-110 ml. The preliminary test of application on patients evidenced the suitability of the method in a clinical setting. CONCLUSIONS The MC-guided delineation of tumor volume may reduce the acquisition time required for the experimental calibration. Analysis of images of several simulated and experimental test objects, Zubal head phantom and clinical cases demonstrated the robustness, suitability, accuracy, and speed of the proposed method. Nevertheless, studies concerning tumors of irregular shape and/or nonuniform distribution of the background activity are still in progress.


Physics in Medicine and Biology | 2015

Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT.

Massimiliano Pacilio; Ernesto Amato; Nico Lanconelli; Chiara Basile; Leonel Alberto Torres; Francesca Botta; Mahila Ferrari; Nestor Cornejo Diaz; Marco Coca Perez; María Fernández; Michael Lassmann; Alex Vergara Gil; Marta Cremonesi

This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with (131)I, (177)Lu, (188)Re or (90)Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with (90)Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles.For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for (177)Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED.The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs calculation methods. For volume sizes about 2-fold the spatial resolution, D95% and D50% underestimations up to about 60 and 50% could result, so the usefulness of 3D-dosimetry is highly questionable for small tumors, unless adequate corrections for partial volume effects are adopted.


Physics in Medicine and Biology | 2013

Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images

Francesca Botta; A. Mairani; R. Hobbs; A Vergara Gil; Massimiliano Pacilio; Katia Parodi; Marta Cremonesi; M A Coca Pérez; A Di Dia; Mahila Ferrari; Francesco Guerriero; G Battistoni; Guido Pedroli; Giovanni Paganelli; L A Torres Aroche; George Sgouros

Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image-based dosimetry in nuclear medicine.


European Journal of Nuclear Medicine and Molecular Imaging | 2018

Correlation of dose with toxicity and tumour response to 90Y- and 177Lu-PRRT provides the basis for optimization through individualized treatment planning

Marta Cremonesi; Mahila Ferrari; Lisa Bodei; Carlo Chiesa; Anna Sarnelli; Cristina Garibaldi; Massimiliano Pacilio; Lidia Strigari; Paul Summers; Roberto Orecchia; Chiara Grana; Francesca Botta

PurposePeptide receptor radionuclide therapy (PRRT) with 90Y-labelled and 177Lu-labelled peptides is an effective strategy for the treatment of metastatic/nonresectable neuroendocrine tumours (NETs). Dosimetry provides important information useful for optimizing PRRT with individualized regimens to reduce toxicity and increase tumour responses. However, this strategy is not applied in routine clinical practice, despite the fact that several dosimetric studies have demonstrated significant dose–effect correlations for normal organ toxicity and tumour response that can better guide therapy planning. The present study reviews the key relationships and the radiobiological models available in the literature with the aim of providing evidence that optimization of PRRT is feasible through the implementation of dosimetry.MethodsThe MEDLINE database was searched combining specific keywords. Original studies published in the English language reporting dose–effect outcomes in patients treated with PRRT were chosen.ResultsNine of 126 studies were selected from PubMed, and a further five were added manually, reporting on 590 patients. The studies were analysed and are discussed in terms of weak and strong elements of correlations.ConclusionSeveral studies provided evidence of clinical benefit from the implementation of dosimetry in PRRT, indicating the potential contribution of this approach to reducing severe toxicity and/or reducing undertreatment that commonly occurs. Prospective trials, possibly multicentre, with larger numbers of patients undergoing quantitative dosimetry and with standardized methodologies should be carried out to definitively provide robust predictive paradigms to establish effective tailored PRRT.


Physica Medica | 2017

Gamma camera calibrations for the Italian multicentre study for lesion dosimetry in 223Ra therapy of bone metastases

Massimiliano Pacilio; Bartolomeo Cassano; R. Pellegrini; Elisabetta Di Castro; Alessandra Zorz; Giuseppe De Vincentis; Guido Ventroni; Lucio Mango; Stefano Giancola; Mahila Ferrari; Marta Cremonesi; Claudia L. Bianchi; Giorgio Virotta; C. Carbonini; Patrizia Cesana; Cristian Fulcheri; Valentina Reggioli; Alessandra Ricci; Edoardo Trevisiol; Silvia Maria Anglesio; R. Pani

PURPOSE The aim was to calibrate gamma cameras in the framework of the Italian multicentre study for lesion dosimetry in 223Ra therapy of bone metastases. Equipments of several manufacturers and different models were used. METHODS Eleven gamma cameras (3/8- and 5/8-inch crystal) were used, acquiring planar static images with double-peak (82 and 154keV, 20% wide) and MEGP collimator. The sensitivity was measured in air, varying source-detector distance and source size. Transmission curves were measured, calculating the parameters used for attenuation/scatter correction with the pseudo-extrapolation number method, and assessing their variations with the source size. RESULTS Values of the calibration factor (geometric mean of both detector sensitivities) ranged from 41.1 to 113.9cps/MBq. For the smallest source (diameter of 3.5cm), the calibration factor decrease ranged from -30% to -4%, highlighting the importance of partial volume effects according to the equipment involved. The sensitivity variation with the source-detector distance, with respect to the 15cm-value, reached 10% (in absolute value) in the range 5-30cm, but fixing the distance between the two heads, the calibration factor variation with the distance from the midline was within 3.6%. Appreciable variation of the transmission curves with the source size were observed, examining the results obtained with six gamma cameras. CONCLUSION Assessments of sensitivity and transmission curve variations with source size should be regularly implemented in calibration procedures. The results of this study represent a useful compendium to check the obtained calibrations for dosimetric purposes.


Medical Physics | 2018

Impact of missing attenuation and scatter corrections on 99mTc‐MAA SPECT 3D dosimetry for liver radioembolization using the patient relative calibration methodology: A retrospective investigation on clinical images

Francesca Botta; Mahila Ferrari; Carlo Chiesa; Sara Vitali; Francesco Guerriero; Maria Chiara De Nile; M. Mira; Leda Lorenzon; Massimiliano Pacilio; Marta Cremonesi

PURPOSE To investigate the clinical implication of performing pre-treatment dosimetry for 90 Y-microspheres liver radioembolization on 99m Tc-MAA SPECT images reconstructed without attenuation or scatter correction and quantified with the patient relative calibration methodology. METHODS Twenty-five patients treated with SIR-Spheres® at Istituto Europeo di Oncologia and 31 patients treated with TheraSphere® at Istituto Nazionale Tumori were considered. For each acquired 99m Tc-MAA SPECT, four reconstructions were performed: with attenuation and scatter correction (AC_SC), only attenuation (AC_NoSC), only scatter (NoAC_SC) and without corrections (NoAC_NoSC). Absorbed dose maps were calculated from the activity maps, quantified applying the patient relative calibration to the SPECT images. Whole Liver (WL) and Tumor (T) regions were drawn on CT images. Injected Liver (IL) region was defined including the voxels receiving absorbed dose >3.8 Gy/GBq. Whole Healthy Liver (WHL) and Healthy Injected Liver (HIL) regions were obtained as WHL = WL - T and HIL = IL - T. Average absorbed dose to WHL and HIL were calculated, and the injection activity was derived following each Institutes procedure. The values obtained from AC_NoSC, NoAC_SC and NoAC_NoSC images were compared to the reference value suggested by AC_SC images using Bland-Altman analysis and Wilcoxon paired test (5% significance threshold). Absorbed-dose maps were compared to the reference map (AC_SC) in global terms using the Voxel Normalized Mean Square Error (%VNMSE), and at voxel level by calculating for each voxel the normalized difference with the reference value. The uncertainty affecting absorbed dose at voxel level was accounted for in the comparison; to this purpose, the voxel counts fluctuation due to Poisson and reconstruction noise was estimated from SPECT images of a water phantom acquired and reconstructed as patient images. RESULTS NoAC_SC images lead to activity prescriptions not significantly different from the reference AC_SC images; the individual differences (<0.1 GBq for all IEO patients, <0.6 GBq for all but one INT patients) were comparable to the uncertainty affecting activity measurement. AC_NoSC and NoAC_NoSC images, instead, yielded significantly different activity prescriptions and wider 95% confidence intervals in the Bland-Altman analysis. Concerning the absorbed dose map, AC_NoSC images had the smallest %VNMSE value and the highest fraction of voxels differing less than 2 standard deviations from AC_SC. CONCLUSIONS The patient relative calibration methodology can compensate for the missing attenuation correction when performing healthy liver pre-treatment dosimetry: safe treatments can be planned even on NoAC_SC images, suggesting activities comparable to AC_SC images. Scatter correction is recommended due to its heavy impact on healthy liver dosimetry.


Physics in Medicine and Biology | 2017

Comparison of myocardial blood flow estimates from dynamic contrast-enhanced magnetic resonance imaging obtained with three quantitative analysis methods

Cristian Borrazzo; Nicola Galea; Massimiliano Pacilio; Luisa Altabella; Enrico Preziosi; Marco Carnì; Federica Ciolina; Francesco Vullo; Marco Francone; Carlo Catalano; Iacopo Carbone

Dynamic contrast-enhanced cardiovascular magnetic resonance imaging can be used to quantitatively assess the myocardial blood flow (MBF), recovering the tissue impulse response function for the transit of a gadolinium bolus through the myocardium. Several deconvolution techniques are available, using various models for the impulse response. The method of choice may influence the results, producing differences that have not been deeply investigated yet. Three methods for quantifying myocardial perfusion have been compared: Fermi function modelling (FFM), the Tofts model (TM) and the gamma function model (GF), with the latter traditionally used in brain perfusion MRI. Thirty human subjects were studied at rest as well as under cold pressor test stress (submerging hands in ice-cold water), and a single bolus of gadolinium weighing 0.1  ±  0.05 mmol kg-1 was injected. Perfusion estimate differences between the methods were analysed by paired comparisons with Students t-test, linear regression analysis, and Bland-Altman plots, as well as also using the two-way ANOVA, considering the MBF values of all patients grouped according to two categories: calculation method and rest/stress conditions. Perfusion estimates obtained by various methods in both rest and stress conditions were not significantly different, and were in good agreement with the literature. The results obtained during the first-pass transit time (20 s) yielded p-values in the range 0.20-0.28 for Students t-test, linear regression analysis slopes between 0.98-1.03, and R values between 0.92-1.01. From the Bland-Altman plots, the paired comparisons yielded a bias (and a 95% CI)-expressed as ml/min/g-for FFM versus TM, -0.01 (-0.20, 0.17) or 0.02 (-0.49, 0.52) at rest or under stress respectively, for FFM versus GF, -0.05 (-0.29, 0.20) or  -0.07 (-0.55, 0.41) at rest or under stress, and for TM versus GF, -0.03 (-0.30, 0.24) or  -0.09 (-0.43, 0.26) at rest or under stress. With the two-way ANOVA, the results were p  =  0.20 for the method effect (not significant), p  <  0.0001 for the rest/stress condition effect (highly significant, as expected), whereas no interaction resulted between the rest/stress condition and method (p  =  0.70, not significant). Considering a wider time-frame (60 s), the estimates for both rest and stress conditions were 25%-30% higher (p in the range 0.016-0.025) than those obtained in the 20 s time-frame. MBF estimates obtained by various methods under rest/stress conditions were not significantly different in the first-pass transit time, encouraging quantitative perfusion estimates in DCE-CMRI with the used methods.

Collaboration


Dive into the Massimiliano Pacilio's collaboration.

Top Co-Authors

Avatar

Marta Cremonesi

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Francesca Botta

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Mahila Ferrari

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Federica Caselli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Leda Lorenzon

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

R. Pani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Carlo Chiesa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Bartolomeo Cassano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Guido Ventroni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

R. Pellegrini

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge