Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Massimo Broggini is active.

Publication


Featured researches published by Massimo Broggini.


Lancet Oncology | 2013

Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): a randomised controlled trial

Marina Chiara Garassino; Olga Martelli; Massimo Broggini; Gabriella Farina; Silvio Veronese; Eliana Rulli; Filippo Bianchi; Anna Bettini; Flavia Longo; Luca Moscetti; Maurizio Tomirotti; Mirko Marabese; Monica Ganzinelli; Calogero Lauricella; Roberto Labianca; Irene Floriani; Giuseppe Giaccone; Valter Torri; Alberto Scanni; Silvia Marsoni

BACKGROUND Erlotinib is registered for treatment of all patients with advanced non-small-cell lung cancer (NSCLC). However, its efficacy for treatment of patients whose tumours are EGFR wild-type-which includes most patients-is still contentious. We assessed the efficacy of erlotinib compared with a standard second-line chemotherapy in such patients. METHODS We did this randomised controlled trial in 52 Italian hospitals. We enrolled patients who had metastatic NSCLC, had had platinum-based chemotherapy, and had wild-type EGFR as assessed by direct sequencing. Patients were randomly assigned centrally (1:1) to receive either erlotinib orally 150 mg/day or docetaxel intravenously 75 mg/m(2) every 21 days or 35 mg/m(2) on days 1, 8, and 15, every 28 days. Randomisation was stratified by centre, stage, type of first-line chemotherapy, and performance status. Patients and investigators who gave treatments or assessed outcomes were not masked to treatment allocation, investigators who analysed results were. The primary endpoint was overall survival in the intention-to-treat population. The study is registered at ClinicalTrials.gov, number NCT00637910. FINDINGS We screened 702 patients, of whom we genotyped 540. 222 patients were enrolled (110 assigned to docetaxel vs 112 assigned to erlotinib). Median overall survival was 8·2 months (95% CI 5·8-10·9) with docetaxel versus 5·4 months (4·5-6·8) with erlotinib (adjusted hazard ratio [HR] 0·73, 95% CI 0·53-1·00; p=0·05). Progression-free survival was significantly better with docetaxel than with erlotinib: median progression-free survival was 2·9 months (95% CI 2·4-3·8) with docetaxel versus 2·4 months (2·1-2·6) with erlotinib (adjusted HR 0·71, 95% CI 0·53-0·95; p=0·02). The most common grade 3-4 toxic effects were: low absolute neutrophil count (21 [20%] of 104 in the docetaxel group vs none of 107 in the erlotinib group), skin toxic effects (none vs 15 [14%]), and asthenia (ten [10%] vs six [6%]). INTERPRETATION Our results show that chemotherapy is more effective than erlotinib for second-line treatment for previously treated patients with NSCLC who have wild-type EGFR tumours.


Cancer Treatment Reviews | 2012

Epithelial-mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact

Chiara Foroni; Massimo Broggini; Daniele Generali; Giovanna Damia

Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In this process, cells acquire molecular alterations that facilitate dysfunctional cell-cell adhesive interactions and junctions. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Such transformation has implications in progression of breast carcinoma to metastasis, and increasing evidences support most tumors contain a subpopulation of cells with stem-like and mesenchymal features that is resistant to chemotherapy. This review focuses on the physiological and pathological role of EMT process, its molecular related network, its putative role in the metastatic process and its implications in response/resistance to the current and/or new approaching drugs in the clinical management of breast cancer.


Stem Cells | 2007

Oct-4 Expression in Adult Human Differentiated Cells Challenges Its Role as a Pure Stem Cell Marker

Stefano Zangrossi; Mirko Marabese; Massimo Broggini; Rosaria Giordano; Marco D'Erasmo; Elisa Montelatici; Daniela Intini; Antonino Neri; Maurizio Pesce; Paolo Rebulla; Lorenza Lazzari

The Oct‐4 transcription factor, a member of the POU family that is also known as Oct‐3 and Oct3/4, is expressed in totipotent embryonic stem cells (ES) and germ cells, and it has a unique role in development and in the determination of pluripotency. ES may have their postnatal counterpart in the adult stem cells, recently described in various mammalian tissues, and Oct‐4 expression in putative stem cells purified from adult tissues has been considered a real marker of stemness. In this context, normal mature adult cells would not be expected to show Oct‐4 expression. On the contrary, we demonstrated, using reverse transcription‐polymerase chain reaction (PCR) (total RNA, Poly A+), real‐time PCR, immunoprecipitation, Western blotting, band shift, and immunofluorescence, that human peripheral blood mononuclear cells, genetically stable and mainly terminally differentiated cells with well defined functions and a limited lifespan, express Oct‐4. These observations raise the question as to whether the role of Oct‐4 as a marker of pluripotency should be challenged. Our findings suggest that the presence of Oct‐4 is not sufficient to define a cell as pluripotent, and that additional measures should be used to avoid misleading results in the case of an embryonic‐specific gene with a large number of pseudogenes that may contribute to false identification of Oct‐4 in adult stem cells. These unexpected findings may provide new insights into the role of Oct‐4 in fully differentiated cells.


Cancer Research | 2005

Inhibition of the Phosphatidylinositol 3-Kinase/Akt Pathway by Inositol Pentakisphosphate Results in Antiangiogenic and Antitumor Effects

Tania Maffucci; Enza Piccolo; Albana Cumashi; Manuela Iezzi; Andrew M. Riley; Adolfo Saiardi; H. Yasmin Godage; Cosmo Rossi; Massimo Broggini; Stefano Iacobelli; Barry V. L. Potter; Paolo Innocenti; Marco Falasca

The purpose of this study was to investigate the antiangiogenic and in vivo properties of the recently identified phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor Inositol(1,3,4,5,6) pentakisphosphate [Ins(1,3,4,5,6)P5]. Because activation of the PI3K/Akt pathway is a crucial step in some of the events leading to angiogenesis, the effect of Ins(1,3,4,5,6)P5 on basic fibroblast growth factor (FGF-2)-induced Akt phosphorylation, cell survival, motility, and tubulogenesis in vitro was tested in human umbilical vein endothelial cells (HUVEC). The effect of Ins(1,3,4,5,6)P5 on FGF-2-induced angiogenesis in vivo was evaluated using s.c. implanted Matrigel in mice. In addition, the effect of Ins(1,3,4,5,6)P5 on growth of ovarian carcinoma SKOV-3 xenograft was tested. Here, we show that FGF-2 induces Akt phosphorylation in HUVEC resulting in antiapoptotic effect in serum-deprived cells and increase in cellular motility. Ins(1,3,4,5,6)P5 blocks FGF-2-mediated Akt phosphorylation and inhibits both survival and migration in HUVEC. Moreover, Ins(1,3,4,5,6)P5 inhibits the FGF-2-mediated capillary tube formation of HUVEC plated on Matrigel and the FGF-2-induced angiogenic reaction in BALB/c mice. Finally, Ins(1,3,4,5,6)P5 blocks the s.c. growth of SKOV-3 xenografted in nude mice to the same extent than cisplatin and it completely inhibits Akt phosphorylation in vivo. These data definitively identify the Akt inhibitor Ins(1,3,4,5,6)P5 as a specific antiangiogenic and antitumor factor. Inappropriate activation of the PI3K/Akt pathway has been linked to the development of several diseases, including cancer, making this pathway an attractive target for therapeutic strategies. In this respect, Ins(1,3,4,5,6)P5, a water-soluble, natural compound with specific proapoptotic and antiangiogenic properties, might result in successful anticancer therapeutic strategies.


Clinical Cancer Research | 2005

PRL-3 Phosphatase Is Implicated in Ovarian Cancer Growth

Federica Polato; Annamaria Codegoni; Robert Fruscio; Patrizia Perego; Costantino Mangioni; Saurabh Saha; Alberto Bardelli; Massimo Broggini

Purpose: The PRL-3 phosphatase has been found expressed at higher levels in metastasis than in primary tumors of patients with colorectal cancer. In the present study, we evaluated the expression of PRL-3 in ovarian cancer tissue and its role in ovarian cancer cell growth. Experimental Design: PRL-3 phosphatase expression was evaluated in 84 ovarian tumor samples. PRL-3 expression has been knocked down using specific small interfering RNAs to determine its role in ovarian cancer cell growth in vitro. Results: In ovarian cancers, PRL-3 expression correlates with disease progression, being higher in advanced (stage III) than in early (stage I) tumors. In situ measurements of PRL-3 expression showed that it was confined to the epithelial neoplastic cells. The molecular mechanism underlying PRL-3 overexpression in ovarian cancers is independent from amplification of the corresponding genomic locus. Ovarian cancer cells growing in culture have high levels of expression of this phosphatase. PRL-3–specific knockdown using small interfering RNA severely impaired the growth of cells without affecting the expression of the closely related homologue PRL-1. Intriguingly, the growth of human colon carcinoma cells expressing lower levels of the PRL-3 was not affected by the PRL-3 knockdown. Conclusions: Altogether, these results show that PRL-3 expression is associated with ovarian cancer progression and point to a key role for this phosphatase in the control of ovarian cancer cells growth. This strongly suggests that PRL-3 should be considered as a target for the discovery of new anticancer agents to be tested against this malignancy.


Genes, Chromosomes and Cancer | 1999

CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers.

Francesco Bertoni; Anna Maria Codegoni; Daniela Furlan; Maria Grazia Tibiletti; Carlo Capella; Massimo Broggini

The protein encoded by the CHK1 gene plays an important role in the G2 checkpoint in mammalian cells. In its coding region it presents a sequence of nine consecutive adenines that are a potential site of mutations in tumors with microsatellite instability (MSI). We analyzed the presence of frameshift mutations in the CHK1 gene in human colon and endometrial cancer samples. In the same cancer samples genes known to be altered in these tumors (BAX, TGFBRII, and IGFIIR) were also analyzed. CHK1 frameshfit mutations were found in 1 out 10 colon cancers and 2 out of 7 endometrial cancers showing MSI. CHK1 alterations were associated with the presence of a high degree of MSI. No alterations were found in patients with tumors showing low frequency or lacking instability (microsatellite stable). The same was true for the other four genes analyzed. The insertion or deletion of one A in the poly A tract resulted in a truncated protein. Alterations of the CHK1 gene could represent an alternative way of cancer cells to escape from cell cycle control. Genes Chromosomes Cancer 26:176–180, 1999.


Oncogene | 2004

Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway

Enza Piccolo; Sara Vignati; Tania Maffucci; Pasquale F. Innominato; Andrew M. Riley; Barry V. L. Potter; Pier Paolo Pandolfi; Massimo Broggini; Stefano Iacobelli; Paolo Innocenti; Marco Falasca

Phosphoinositide 3-kinase (PI 3-K) is implicated in a wide array of biological and pathophysiological responses, including tumorigenesis, invasion and metastasis, therefore specific inhibitors of the kinase may prove useful in cancer therapy. We propose that specific inositol polyphosphates have the potential to antagonize the activation of PI 3-K pathways by competing with the binding of PtdIns(3,4,5)P3 to pleckstrin homology (PH) domains. Here we show that Ins(1,3,4,5,6)P5 inhibits the serine phosphorylation and the kinase activity of Akt/PKB. As a consequence of this inhibition, Ins(1,3,4,5,6)P5 induces apoptosis in ovarian, lung and breast cancer cells. Overexpression of constitutively active Akt protects SKBR-3 cells from Ins(1,3,4,5,6)P5-induced apoptosis. Furthermore, Ins(1,3,4,5,6)P5 enhances the proapoptotic effect of cisplatin and etoposide in ovarian and lung cancer cells, respectively. These results support a role for Ins(1,3,4,5,6)P5 as a specific inhibitor of the PI 3-K/Akt signalling pathway, that may sensitize cancer cells to the action of commonly used anticancer drugs.


Cell Cycle | 2012

Combined inhibition of Chk1 and Wee1: In vitro synergistic effect translates to tumor growth inhibition in vivo

Laura Carrassa; Rosaria Chilà; Monica Lupi; Francesca Ricci; Cinzia Celenza; Marco Mazzoletti; Massimo Broggini; Giovanna Damia

Targeting Chk1 protein kinase can enhance the antitumor effects of radio- and chemotherapy. Recent evidence disclosed a role of Chk1 in unperturbed cell proliferation and survival, implying that Chk1 inhibitors could also be effective as single agents in tumors with a specific genetic background. To identify genes in synthetic lethality with Chk1, we did a high-throughput screening using a siRNA library directed against 719 human protein kinases in the human ovarian cancer cell line OVCAR-5, resistant to Chk1 inhibitors. Wee1 tyrosine kinase was the most significant gene in synthetic lethality with Chk1. Treatment with non-toxic concentrations of a Chk1 inhibitor (PF-00477736) and a Wee1 inhibitor (MK-1775) confirmed the marked synergistic effect in various human cancer cell lines (breast, ovarian, colon, prostate), independently of the p53 status. Detailed molecular analysis showed that the combination caused cancer cells to undergo premature mitosis before the end of DNA replication, with damaged DNA leading to cell death partly by apoptosis. In vivo treatment of mice bearing OVCAR-5 xenografts with the combination of Chk1 and Wee1 inhibitors led to greater tumor growth inhibition than with the inhibitors used as single agents with no toxicity. These data provide a strong rationale for the clinical investigation of the combination of a Chk1 and a Wee1 inhibitor.


European Journal of Cancer | 2010

Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and β-catenin/Wnt pathways

Sara Previdi; Paola Maroni; Emanuela Matteucci; Massimo Broggini; Paola Bendinelli; Maria Alfonsina Desiderio

To clarify the reciprocal interaction between human-breast cancer metastatic cells and bone microenvironment, we studied the influence of HGF/Met system on a proposed-prognostic marker of aggressiveness, the beta-catenin/Wnt pathway. For in vitro and in vivo experiments we used 1833-bone metastatic clone, derived from human-MDA-MB231 cells. In osteolytic bone metastases and in metastatic cells, Met was expressed in nuclei and at plasma membrane, and abnormally co-localised at nuclear level with beta-catenin and the tyrosine phosphorylated c-Src kinase. Thus, in 1833 cells nuclear-Met COOH-terminal fragment and beta-catenin-TCF were constitutively activated, possibly by receptor and non-receptor tyrosine kinases. The activity of the gene reporter TOPFLASH (containing multiple TCF/LEF-consensus sites) was measured, as index of beta-catenin functionality. In 1833 cells, human and mouse HGF increased Met and beta-catenin tyrosine phosphorylation and expression in nuclear and perinuclear compartments, beta-catenin nuclear translocation via Kank and TOPFLASH transactivation. Human HGF was autocrine/intracrine in bone metastasis, and mouse HGF originating from the adjacent host-bone marrow, was found inside the metastatic nuclei. Parental MDA-MB231 cell nuclei did not show functional beta-catenin, for TCF-transactivating activity, and the regulation by HGF. Our study highlighted the importance of the metastasis-stroma interaction in human-breast cancer metastatisation and first identified the HGF/nuclear Met/phospho-c-Src/beta-catenin-TCF/Wnt pathway as a potential-therapeutic target to delay establishment/progression of bone metastases by affecting the aggressive phenotype.


British Journal of Cancer | 2004

Antiangiogenic activity of aplidine, a new agent of marine origin

Giulia Taraboletti; M Poli; Romina Dossi; L Manenti; P Borsotti; G T Faircloth; Massimo Broggini; Maurizio D'Incalci; Domenico Ribatti; Raffaella Giavazzi

The antineoplastic compound aplidine, a new marine-derived depsipeptide, has shown preclinical activity in vitro on haematological and solid tumour cell lines. It is currently in early phase clinical trials. The exact mechanism of action of this anticancer agent still needs to be clarified. We have previously reported that aplidine blocks the secretion of the angiogenic factor vascular endothelial growth factor (VEGF) by the human leukaemia cells MOLT-4, suggesting a possible effect on tumour angiogenesis. This study was designed to investigate the antiangiogenic effect of aplidine. In vivo, in the chick embryo allantoic membrane (CAM) assay, aplidine inhibited spontaneous angiogenesis, angiogenesis elicited by exogenous VEGF and FGF-2, and induced by VEGF overexpressing 1A9 ovarian carcinoma cells. In vitro, at concentrations achievable in the plasma of patients, aplidine inhibited endothelial cell functions related to angiogenesis. It affected VEGF- and FGF-2-induced endothelial cell proliferation, inhibited cell migration and invasiveness assessed in the Boyden chamber and blocked the production of matrix metalloproteinases (MMP-2 and MMP-9) by endothelial cells. Finally, aplidine prevented the formation of capillary-like structures by endothelial cells on Matrigel. These findings indicate that aplidine has antiangiogenic activity in vivo and inhibits endothelial cell functional responses to angiogenic stimuli in vitro. This effect might contribute to the antineoplastic activity of aplidine.

Collaboration


Dive into the Massimo Broggini's collaboration.

Top Co-Authors

Avatar

Maurizio D'Incalci

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Mirko Marabese

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Giovanna Damia

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Marchini

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Eugenio Erba

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Faina Vikhanskaya

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Elisa Caiola

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Eliana Rulli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge